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FOREWORD

This work was undertaken at the instigation of Prof. Dr. G. Eichelberg,
Starting with the problem of the heat exchange through radiation, the work con-
tinued with experimental and theoretical considerations for practical applica-
tion.,

The experimental investigations were conducted at the Machine Iaboratory
of the Swiss Technical College at Zlirich,

I wish to express my sincere thanks to my highly esteemed teacher, Prof.
Eichelberg, for his interest in seeing this work carried out to its successful
conclusion., I thank the Study Commission for Aeronautics at the Swiss Technical
Colliege for their financial assistance in facilitating the printing. To the
personnel of the Machine Iaboratory, especially Mr. P. Hollenstein, I express
my appreciation and thanks for the careful design of the experimental apparatus.

ZUrich, November 1954
Benjamin Minch

FOREWORD TO THE ENGLISH TRANSIATION

The recommendation that an Engish edition of this work be published was
made by scientists at the NASA Iewls Research Center in Cleveland, Ohio., Since
the appearance of the original German edition in 1955, requirements for space
travel and earth satellite technology have produced a growing interest everywhere
in the precise calculation of heat exchange through radiation. The calculation
methods developed in this present work are numerically exact and can be pro-
grammed in a digital computer.,

Zlrich, November 1966

Benjamin Minch
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Most Important Symbols
total radiation energy per unit surface

radiation energy per unit surface and unit solid angle in direction of
angle v

radiation energy per unit surface and unit solid angle in direction of
surface normal

surface

reflection factor

direction~dependent reflection factor
brightness

radiation energies

emission coefficient of total radiation
emission coefficient for angle v

reflection coefficient taken over all directions of space and all in-
cidence angles

reflection coefficient for incident angle v

= p' reflection coefficient for the incidence angle v and direction
of reflection (u,V)

incidence angle of radiation
angles of reflection
solid angle ratio

solid angle

iv



ABSTRACT. The thermal radiation properties of a surface can
be characterized by its emission and reflection coefficients,
An experimental apparatus is described for measuring the re-
flection coefficient as a function of the incident and re~
flected directions. All directional distributions from the
purely specular to the strongly scattering were found by
superposition of purely specular and diffuse results. A good
approximation was found for the tests on concentric spheres.
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DIRECTIONAL, DISTRIBUTION IN THE REFIECTION OF HEAT
RADTATTON AND ITS EFFECT ON HEAT TRANSFER¥

By Benjamin Miinch

INTRODUCTION

If two or more surfaces at different temperatures exchange heat by radia-
tion, the amounts of energy transferred depend both on the geometric arrangement
and on the radiation properties of the participating surfaces. If the surfaces
are only slightly reflecting, that is, approximately a blackbody in their prop-
erties, only the direct emission needs to be considered in computing the heat
transfer. The contribution of the reflected radiation may be neglected. This
well known simplification, known as the Nusselt approximation, makes it possible
to treat even very complicated geometric arrangements with reasonable computa-
tional labor. However, the often required computation of the reflections is
treated in the literature for only a few rather simple cases such as parallel
plates, and concentric, spherical, and cylindrical surfaces. Here, almost with-
out exception, the reflections are treated like emissions in that the same di-
rectional distribution (the Lambert cosine law), is assumed for both emission
and reflection.

The problem of the radiation exchange between eccentric spherical surfaces
had been studied some years ago at the Institute for Thermodynamics and Combus-
tion Engines of the Swiss Technical Institute. Approximation computations, which
similarly assume the reflections to obey the Lambert cosine law while they take
into account their local distribution on the surface, have been carried out by
Eichelberg and H. H. 0tt (ref. 8). The results are in good qualitative agreement
with those obtained in section 4. In accordance with these results, the heat
transfer must decrease 1if the spherical surfaces are brought from the concentric
to an eccentric position. On the contrary, tests conducted in 1949 by K. Elser
(ref. 7) showed an increase of the heat transfer with increasing eccentricity.
This was also found to be true when using matte, diffusely reflecting surfaces
for which 1t was believed that the assumptions of the calculation were satisfied.
The qualitatively different result of the experiment makes it appear likely that
not only the local distribution of the reflections but also their distribution
of direction plays an important part.

Measurements of the reflections and their directional distributions of

*1Die Richtungsverteilung bei der Reflexion von Warmestrahlung und ihr Ein-
fluss auf die Wirmeiibertrangung.' Mitteilung Nr. 16, Institut flir Thermodynamik
und Verbrennungsmotorenbau an der Eidgenossischen Technischen Hochschule, Ziirich,

1955.
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energy were conducted by E. Eckert (ref. 3), with emission temperatures between
273.40 and 280° C and with the incident radiation predominantly normsl to the
surface. The measurements, described in the first section of this report, of
the directional distribution of the reflections go into more detail on the de-
pendence on the incident angle of the radiation. The emission temperatures em-
ployed are higher throughout than those of Eckert and generally vary between
500° and 1000° C. This has the advantage, in regard to the measuring technique,
that greater radiation energies are available and, consequently, the aperture
angle of the bundle of rays used can be made smaller.

The theoretical computations, given in sections 2 to 4, are for the purpose
of applying the obtained results to the determination of the heat exchange. Fi-
nally, in section 5, the results are experimentally tested for the example of

eccentric spherical surfaces.

The present work refers only to the total radiation emitted by a surface
that is composed of the various wavelengths of the spectrum. The radiating sur-
faces are always (except as noted in sections 11 and 15) assumed as gray radia-
tors whose emission is proportional to the fourth power of the absolute tempera-
ture, according to the Stefan-Beltzmann law. TIn accordance with the usual prac-
tice for technical computations of radiation exchange, the deviations from the
gray radiator assumptions are taken into account by assuming the radiation prop-
erties (emission and reflection coefficients) to be dependent on the temperature.

1. DIRECTIONAL DISTRTIBUTION OF REFLECTIONS, DETERMINATION
OF ABSORPTION COEFFICIENTS THROUGH MEASUREMENT
OF REFLECTION COEFFICIENTS

11. Emission and Reflection Magnitudes

According to the Stefan-Boltzmann law, a heated surface gives off the total

radiation energy
7 \4
S(loo> (l)

per unit surface per unit time. Here Cg denotes the radiation constant of a
blackbody, T 1is the absolute temperature in OK, and the emission ratio or emis-
sion coefficient € dis the ratio of the total radiation of the surface under
consideration to the radiation of the blackbody, referred to all wavelengths and
directions of space. For the radiation per unit surface and unit solid angle
emitted at angle v to the surface normal there are defined an €, and, in

particular for the direction of the normal to the surface, an eg:

E = €B, = €C

S

Ev = Evsev

(2)

En = Ensen



The subscript s refers to the blackbody, the subscript v +to the angle v be-
tween the direction of the emission and the surface normal. The emission of a
blackbody is distributed, according to the Lambert cosine law, as

EVS = Ens cos v (3)

and always forms an upper limit for the emission of a surface radiating due to
its temperature alone. If ¥ denotes the angle of rotation about the surface
normal, the solid angle element is given by

dQ = sin v dv d¥

and, by integration over all directions of the half-space, the total radiation
is

E=f=, a
With account taken of equation (3) there is obtained for a blackbody

By = ﬂEnS

and finally, for the emission ratio of the total radiation,

n/2
€ = f e, sin(2v)dy (4)
0

If heat radiation falls on a nonblackbody in the direction €, as shown in
figure 1, the nonabsorbed energy is in general reflected in all directions of the
half-space. In figure 1, € denotes the ray with angle of incidence v to the
surface normal n and v a reflected ray whose direction is fixed by the angles
of reflection u and V. If E, is the incident energy per unit surface, R,
the total reflected energy per unit surface and Rvuw the reflected energy per
unit surface and unit solid angle in the direction r we define the reflection

coefficient, referred to the angle of incidence v and the angles of reflec-
tion p and VY, as

2nR
BT 7' 4
Pyuy = P’ = E, (5)

The double integration over all reflection directions of the half-space gives the
reflection coefficient corresponding to the direction of incidence v

/2 plx
=L o' dn =X p' dA¥ sin p du (8)
21 2
0

0

&
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Figure 1. - Direction of incidence and
reflection.

If p' is constant over all directions, p and p' are of the same magnitude.
) v gn

The double integral, equation (6) is, for the purpose of determining p, from
measured reflection coefficients p', separated into two simple integrals:

_ 2n
o =5 pt dv
21 0
(7)
/2 _
p, = f p sin p du

6]

The Kirchheff law, which follows from the second principle of thermody-
namics, connects the emission and reflection magnitudes with each other. Im-
agine having two surface elements in a black cavity according to figure 2: <the
one element dF; with the emission coefficient €, and reflection coefficient
Py, 1n the direction v; the second element dFy; with e,+ and p,r in the di-
rection +v'. The cavity and the two surface elements have the same temperature.
From dFy there is emitted the radiation

dFlEv = dFlEnS COos v €

v
Of this radiation the fraction
B ag < 21 &2 o :
1E,, = Z ng COS v cos v' €,



ak

Figure 2. - For proving Kirchhoff's law.

strikes the surface element dF,, that absorbs this amount multiplied by 1-p,r.
Hence, dFp receives from dF; the energy stream

daFy dFp

dQlZ = El'ls I‘2

cos v cos ' €v(l - Py

The emission from dJdF, 1leads to the radiation heat dQz; transferred to dFy.
The expression for it 1s obtained from the formula for dQjz by interchanging
the subscripts v and v' and differs from it only through the last two fac-
tors. The second principle forbids the heat exchange between two bodies of

equal temperature and therefore requires dle = dQs7. From this follows the
condition

el - pyt) =€, (1 -p)
and when the surface element dFe is a blackbody

The result, according to which the emission coefficient must be equal to the ab-
sorption coefficient 1 - p, for every direction of emission, we shall denote
as the differential Kirchhoff law, in contrast to the less general relation

e =1-p

obtained from equation (8) through integration and which is normally denoted as
Kirchhoff's law and requires the equality of the emission and absorption coeffi-
cients of the total radistion. The law of equation (8), according to the assump-
tions of the proof, holds for every surface, including a nongray radiator. It
holds without restriction for the gray radiator (whose emission and absorption
coefficients are independent of the temperature) upon which gray radiation of



corresponding temperature falls. Since nothing must be assumed as to the emis-
sion temperature it also holds for each individual wavelength of the spectrum.

According to the differential Kirchhoff's law no surface can emit in any 4di-
rection more than the blackbody, that is, €, can never be greater than 1. It
is significant to compare the directional distribution of the emissions with the
Lambert cosine law that holds for the directional distribution of the upper
1imit, namely the blackbody. For the reflection coefficient p' there is no
such limit. It may become arbitrarily large for individual directions and its
definition does not depend on the Lambert cosine law.

12. Apparatus for Determining Reflection Coefficients

For measuring the reflection coefficients p' on a surface that is in the
form of a test plate, the latter is irradiated by a radiation source with def-
inite intensity and at a given angle of incidence. A radiation measuring ap-
paratus receives the reflections in a small solid angle interval in the desired
direction of reflection.

Figure 3 shows the design of the experimental setup. The stand 1 carries
on its fixed arm 2, formed like an "optical bench," the cavity radiator 4 as a
radiation source. The interchangeable diaphragm 5 with the circular cross sec-
tion F2 has an aperture of diameter of 10, 20, or 40 millimeters and together
with the adjustable distance ry (for the tests r1 was equal to 40 or 60 cm)

determines the energy stream that falls per unit area on the test plate 9. The
arm 3, which can swing out in the direction of the arrow, carries the vacuum
thermocouple 17 as a radiation measuring instrument. For quantitatively regu-
lating the radiation output to be measured the rectangular diaphragm 14 and the
diaphragm 16 with the circular cross section Fz are used (diameter of aperture
20 or 40 mm). Both diaphragms are interchangeable and are at the fixed distance
rp = 87.5 centimeters from each other. For interrupting the radiated energy
stream, screen slide 7 is used. This slide shuts off the cavity radiator di-
rectly, and the valve 13, which (as protection against an undesired overstressing
of the vacuum thermocouple) is normally closed, is raised during the measurement
by means of a photo release lever. The desired angles of incidence and reflec-
tion can be adjusted by deflecting the arm 3 (angle scale on the stand) and by
rotating the test plate about the vertical axis (indicator 11 and circular scale
on the cover of the stand). Furthermore, the plate 9 can be deflected in the
arc 10 (rotation about a horizontal axis).

The radiation protective tunnels 6 and 15 and Jjacket sheet metal 12 screen
off the radiation to the outside. The numerous intermediate screens and the
auxiliary diaphragm 8, which restricts the incident beam to a minimal required
diameter, prevent the falsifying of the measurement by disturbing reflections at
the wall. The Jacket of the cavity radiator, diaphragms 5 and 8, the test plate
and a part of the radiation screens 6 are water-cooled.

The electrically heated radiation source (fig. 4) is designed for a maximum
emission temperature of 1000° C. The radiating part consists of the hollow body

6
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Figure 4. - Section through radiation source.

1, whose inner surface is grooved for the purpose of more nearly approximating
a blackbody and was prepared from the steatite material "calorstea'" of the Swiss
Isola Works of Breitenbach. The heating coil 2 of canthal wire is embedded in
the cement Jacket 3 and is made up of 4 partial coils whose loading can be regu-
lated with the aid of series-connected resistances so that the cavity radiator
assumes the desired steady temperature constant over the entire length within
about *#10° C. The temperature is measured with the three platinum-platinum
rhodium thermocouples 5 which, with stretched sides, were cemented into a groove
of the hollow body 1. The cold soldered Jjoints were situated near the switch
panel on the rear side of the radiator and were approximately at room tempera-
ture. The temperature measured with the rearmost thermocouple serves as the
emission temperature of the blackbody. The measurement need be accurate only
to 5° C since the emission temperature is required only as a parameter. The
heated part of the radiator is surrounded by an asbestos insulation and by the
water-cooled jacket 4. The heating and thermocouple wires were led oubt on the
rear side on a switch panel.

The vacuum thermocouple 17 (fig. 3), from the firm of Kipp and Sons in
Delft (Holland), contains a radiation receiver two 0.1 millimeter-wide thermo-
couples and 0.001 millimeter-thick band-shaped manganin-constantan thermocouples
(thermocouple voltage about 4.1 mV/100° C) in the arrangement indicated in fig-
ure 5, where the dimensions are given under the dimension lines. The two thermo-
couples are connected in opposition if the thermoelectric voltage is tapped off
the terminals K; and Kp; one receives the radiation while the other forms the

cold Jjoint for eliminating the instrument temperature. The adjustable elliptical

8



mirror 19, with the focal lengths 35 and 2385 millimeters, concentrates the radia-
tion near the soldered joint of one of the two thermocouples. The mirror (with
r2 = 875 mm) forms an image of the manganin-constantan strips enlarged 28.8-14
times (fig. 3). TFor example, if the dlaphragm 14 has an aperture of height

B = 20 millimeters, the portion of the thermocouple indicated by the hatched
part in figure 5 is acted upon. The effective area TFo (aperture cross sec.

of diaphragm 14) is then 2.9 X 20 millimeters squared. The interchangeable
diaphragms 14 are all 10 millimeters wide and have various heights 3B (from 0.5
to 20 mm). The thermoelectric voltage is not accurately proportional to Fz be-
cause the sensitivity of the measuring system depends to some extent on the im-
pingement width B. The diaphragms must therefore be compared with each other
in a checking experiment in order to determine the ratios of the measurement
readings for any two different apertures ¥s (determination of the diaphragm
ratios F4/F,, see sec. 13).

The measuring system is enclosed in the small tube 18 (fig. 3) and, for the
purpose of raising its sensitivity by excluding the heat conduction of the sur-
rounding air, is placed in a high vacuum. A rock salt window that sufficiently
passes all wavelengths between 2000 A and 16 p provides the vacuum sealing. A
mercury diffusion pump, which is connected to a rotary pump for producing the
prevacuum, furnishes the high vacuum. Connected in series with it is a liquid
air-cooled cold trap which serves to freeze out the condensable vapors, espe-
cially the mercury vapors. The high vacuum is conducted to the small tube 18,
over a neoprene hose and the glass tube 20.

The sensitivity of the vacuum thermocouple during the measurements was
about 7 pV/pW when evacuated and about 0.5 pV/pW without wvacuum.

A mirror galvanometer with high voltage sensitivity measured the thermo-
electric voltage. For a light pointer length of 2.5 millimeters a scale read-
ing of 53 mm/uV was obtained. Therefore, radiation powers of 0.1 uW could still
be accurately measured, while those of 0.0l pW could be estimated. The measur-
ing instrument constructed as a dual coil galvanometer is, with its coil of
50 Q internal resistance, connected over a shunt box &, shown in figure 6.

The shunt box permits the reduction of the sensitivity by the factors indicated
whereby the resistance of the galvanometer with shunt is always 50 Q. Further-
more, in the galvanometer circuit there is the resistance Ry of 0.1 of the
calibration box E. Ry together with Ry are part of a voltage divider to
which a voltage of 2 volts from a storage battery is applied by closing the
switch P. The voltage drop over the resistance Ry dis 0.0001 V and is intro-
duced in the galvanometer circuit as calibration voltage. Thereby the sensi-
tivity of the galvanometer can be checked each time.

13. Measuring Procedure
The measurements of the reflection coefficients were conducted as relative

measurements through comparison of the reflected amounts of radiation with a
measurement of the emission output (calibration). In this way the temperature
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of the radiation source, the sensitivities of the thermocouples and the gal-
vanometer and several geometric magnitudes were eliminated from the formulas
for the evaluation.

Figure 7 shows a geometric scheme of the apparatus. Fj and Fz denote

the aperture cross sections of the diaphragms beyond the hole radiator and
ahead of the vacuum thermocouple and Fo 1is the effective aperture of the rec-

tangular diaphragm. The optical axes of the radiator and of the vacuum thermo-
couple and the surface normal n of the test plate need not (as drawn in the
figure), fall in the same plane.

For calibrating the radiation source and the measuring apparatus the swiv-
eling arm 3 is brought into the extended position shown in figure 3 and the test
plate drawvn up high in the stand in the direction of the arrow. The radiator
with the large diaphragm Fq (40 mm diam.) is shifted so near the diaphragm F2

that from each point of the diaphragm aperture ¥z behind the aperture Fp only
the emitting surface of the blackbody can be seen. The emission energy of the

radiator is
. . m \4 |4
e =~ ¥sl\i00/ ~ \100

if its emission coefficient is assumed to be 1. With

!

3

2
TEI'Z

Po3

as solid angle ratio for the radiation exchange from Fy to Fz. FS as effec-

tive aperture of the rectangular diaphragm during the calibration the energy
stream falling on the thermocouple, is obtained as

: (9)

During the measurement the blackbody emits the radiation output EJFy. The
amount of radiation

Fq cos v
1
y = B ———— (watt/cm?)
nry

E

falls on the test plate that reflects the portiom Ry, = E,py. The radiation
emitted per unit area and unit solid angle in the reflection direction consid-
ered becomes

pP'E,

Rywy = 3¢

11



h

Test plate

/ //
447 Redisator

v
LLLLLLL L e

=7 =T

& /
Thermocouple \\\\f

~

Figure 7. - Geometric scheme of apparatus.

Since Fg/cos i is the area of the test plate as viewed from the measuring in-
strument and the diaphragm Fz at the distance rp from the rectangular dia-
phragm subtends the solid angle

F
20 =2
rz
the thermocouple, during the measurement, receives the radiation
\
F2 Fp T3
R — = R —_—
vV cos V¥ cos u r%
or % (lo)
g o Afefs cos v
Qm = BehP zﬂzrgrg cos W J

12
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The formula required for the evaluation

_ n 21 PR cos b
" Qe F; Fp cos v

p! (11)

follows from comparing figures 9 and 10 and holds only for diffuse reflectors.
The applicability can be tested through obtaining the same value p'! with al-
tered geometric parameters F; and rj. The presence of diffuse reflection is
also recognizable by the naked eye if the heat radiation employed contains an
appreciable part of visible wavelengths, that is, if the emission temperature
lies ebove 600° C, for example. On the test plate there is then seen a reddish
shimmer, not sharply defined, that appears to be lodged in the surface.

The specular reflectors reflect only in a direction that is given by the
equality of the angle of incidence v and angle of reflection p and by ¥ = O.
The visual observation shows a sharp mirror image of the radiation source with
the diaphragm aperture Fy; on the test plate. The specification of p' has no
purpose here since for the particular direction of the mirror reflection, p' 1is
infinitely great; for all other directions of the half-space it becomes zero in
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Unit sphere

Figure 9. - Relation between angles introduced.

such manner that the double integral equation (6) gives the correct value for
the reflection coefficient py. ZFor reflectors, py can be determined by a sin-
gle measurement for each angle of incidence. The diaphragm aperture Fi must
be chosen so large and for ry] so small that from each point of the aperture T3
behind the rectangular diaphragm only a piece of the mirror image of the whole
radiator can be seen. The mirror image of the blackbody illuminates more weakly
than the blackbody itself by the factor p, and the radiation falling on the
thermocouple during the measurement is
FoF
Q = 273 (12)

E.__
stpec € nr%
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Figure 10. - Directional distribution of reflection coefficilent
in incident plane for white paper; emission temperatures, 535°

and 905° C.

Comparison with equation (9) gives the formula for the reflection coefficient p
for specular reflection:

Vv

U F2
- 22 (13)
pvsp. T Qe Fy

The experimental criterion for the presence of specular reflection is the inde-
pendence of the measured reading Q; on Fq{ and ry provided F; 1is chosen

sufficiently large and r; 1is chosen sufficiently small.

For the measurements on specular reflectors no evacuation of the thermocou-
ple is required since its sensitivity is sufficient for this purpose. The value
of Pyg generally lies in the neighborhood of 0.9 so that Fé = F, was chosen
in the tests. Readings for Q; and Qg of the same order of magnitude are then
obtained.

15



On the contrary, for diffuse reflectors, the radiation measuring instrument
must be evacuated in order to utilize its full sensitivity. As a rule the
measured energy streams for Qp fluctuated between 0.1 and 1 uW; for Qg, ap-

proximately 10 uW.

In the evaluation formulas (11) and (13) the galvanometer deflections can
be directly substituted in place of the radiation energies Q and Qg, since
the calibration constants of the instruments are divided out. In the development
of the test program about 10 test points were taken each time between two cali-
brations in regular time sequence. Voltage fluctuations of the supply line and
other effects caused the emission output of the blackbody to fluctuate somewhat
so that the two calibrations generally differed. According to the measuring ex-
periences the radiation output reacts so inertly on the disturbance factors that
their time variation may be assumed as linear provided the time interval between
the calibrations does not exceed about 20 minutes. The calibration values Qe
corresponding to the measuring points may thus be obtained by linear interpola-
tion.

The measurements on the investigated diffuse reflectors usually refer to
the incident directions which, formed in the plane through the incidence direc-
tion and the surface normal, lie in the incidence plane. The Incidence plane is
distinguished by the value ¥ = O or 1800 (fig. 1). The directional distribu-
tion of the reflection coefficient p' din the incident plane gives well defined
diagrams for the characterization of the investigated surfaces (e.g., the polar
diagram in fig. 8). Here the directional distribution of p' can be seen for
white typewriter paper that was irradiated at an incident angle of v = 300
with radiation of the emission temperature of 905° C. The incident ray E in
the diagram comes from the left and is marked by the arrow. The apparatus can no
longer be used beyond 20° to the left and right of E because the swivel with
the thermocouple strikes against the fixed arm. In the hatched angular dead re-
gion, therefore, there are no measuring points (no small circles).

For evaluating the integrals (7) and determining p,, measurements are also
required outside the incident plane. Figure 9 shows the relation between the
angles of incidence and reflection v, p, and V¥ and the angles wy, wp, and o
to be adjusted on the apparatus. The straight line e 1s the optical axis of
the radiation source, m 1is the measuring apparatus, n 1s the surface normal of
the test plate, s 1is the direction setting of the arc 10 in figure 3 and e’,
m', and s' are the normal projections of e, my and s on the test plate. On
the apparatus the angle w; 1is adjustable between e and s (angle of rotation

of the arc lO); the angle W, Dbetween e and nm (swiveling angle of the rota-
table arm), and finally the angle of inclination o of the test plate as the
angle between n and s. The x,y-plane of the introduced coordinate system
(x,y,2z) coincides with the plane determined by e and m, the tn-plane of the
system (t&,m,t) coincides with the surface of the test plate. The unit vectors

€, @, ¥, and B of the directions e, m, n, and s have the following compo-
nents in the system (x,y,2z):
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Vec- x-Component y-Component z-Component

tor

€ 1 0 0
g cos ) sin wy 0
— .

m cos Wo sin wo 0
it cos w) cos © sin w; cos o sin o

The angle between two directions 1s equal to the scalar product of the unit vec-

tors of the two directions

prome
cos v = én
cos v
COS Vv = COS W] COS O cos W] = —=t
cos o
and
——>
cos p = mn
COS § = COS O COS T cos v =S5 B
cos ©
where
T o=y - W)

(14)

(15)

For the computation of V4, Vp, and finally of V¥, we start more simply from the

components of the unit vectors in the coordinate system (g,q,g):

Vec- t-Component n-Component ¢ -Component
tor

3 sin v 0 cos v

s cos Y9 sin o sin V1 sin o cos ©

The scalar product of the two vectors gives

85 = cos wy = cos ¥y sin v sin o+ cos v cos ©
whence

cos (,01 - COS vy COs8 O

cos = — -
al sin v sin ©
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Taking relation (14) into account we have

cos Wl = cot v tan ¢ B

and analogously

I"

cos Yo = cot p tan o r (18)

with

¥ =180° - ¥y - ¥y

In practice, v, w, and 0o are generally given and wj, wp, and V¥ are required.
For the special case of the measurements in the incident plane, relations (14),
(15), and (16) simplify to

c=0 )
Wy = vy
1
17
(l)z:v+|_L f ( )
Vv = 0; 1800J

In the determination of the reflection coefficients p' for the incident
angle vy =0 +the interval of reflection angles that is of most interest un 1is
situated in the dead region where angles cannot be measured (0 < p £ 200). As
an expedient, for the incidence angles v = 109, 150, and 20°, measurements in
the incidence plane are carried out for p = v + pg. It is found that the meas-

ured reflection coefficients are primarily a function of the parameter po and
depend only slightly on the incident angle v. Therefore, the extrapolation to
v=0 with u =pup is permissible.

The measuring program comprised the measurement of the reflection distribu-
tion for the six following surfaces, which were selected as typiecal representa-
tives from the large manifold of diffuse reflectors:

(1) Brass sheet, oxidized black with a dull and rough surface.

(2) White matte paper (typewriting paper) as an example of a fibrous sur-
face.

(3) White pine, planed and polished. Surface parallel to direction of fi-
bers.

(4) Steatite material "calorstea" of the Swiss Isola-Werke, Breitenbach, as
an example of a fire-resistant stone.

(5) Aluniinum alloy "anticorodal,” colorless and anodically oxidized.
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(6) Anticorodal sheet, roughened with fine grain by sand blast, surface fine
grained and matte.

The measurements served principally for the determination of the directional
distribution of p' in the incident plane, at various emission temperatures.
Reflection coefficients were measured for only two of the surfaces (black oxi-
dized brass and paper, outside the plane of incidence in order to determine p,,
by integration.

In addition the following four polished metal surfaces were investigated:
a copper, a brass, an anticorodal and an iron sheet, and also a bright-rolled
slightly tarnished anticorodal sheet at various emlssion temperatures between
3500 and 1000° C. The polished metal plates were specular reflectors. The
bright-rolled anticorodal sheet also had specular reflection except for a slight
proportion that reflected diffusely.

14. Measuring Errors

The scatter of the measuring points in the measurements without vacuum
(specular reflectors) was somewhat less than 1 percent and for the measurements
with vacuum (diffuse reflection) about 1.5 percent.

Tnaccurate adjustment of the geometric magnitudes and incomplete knowledge
of the diaphragm ratios Fé/FZ can, as the consideration of formula (11) shows,

lead to systematic errors, which however can be kept within the scatter. In
the tests with the specular reflectors, such errors are exluded because Fé was
chosen equal to Fs.

The incident and reflected beams had finite aperture angles that lay be-
tween 1.5° and 5°, as could easily be computed from the dimensions. Measuring
errors due to finite aperture angles could be of importance where the reflec-
tion coefficient p' varies strongly with the direction of the reflection. In
the conducted measurements they are negligible.

Disturbance reflections at the inner walls of the apparatus are also neg-
ligible since they are sufficiently suppressed by the built-in diaphragms. Only
in very extreme cases, when the reflection coefficlent p' varies within wide
limits (e.g., in the measurement of the diffuse portion in the case of nearly
specular reflectors), can such disturbances sometimes lead to a falsification of
the results.

The heating of the test plates during the taking of a test point leads, in
the case of a few surfaces, to systematic errors that cannot be eliminated. Un-
til the galvanometer has reached its final deflection and can be read off, ra-
diation falls for 45 seconds on the test plate. The surface of the plate is
slightly warmed and emits radiation that falsifies the measurement. The smaller
the heat penetration coefficient ~/Ayc the greater the error of the test plate
because the predominant part of the absorbed radiation energy is conducted away
by the heat conduction in the plate. The heat radiated due to the temperature
increase AT gives the absolute measuring error
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4 4

o - o Ty + AT\E T, . FoFsz
t = Vs 100 100 w2
< 2

—
~ 0.976 At (in ©C)

The ratio to the reflected energy stream which, according to relation (lO), falls
on the thermocouple is

0.976 AT €€
W p!

cos W

O
'Q;:ZCS

where

Fl cos vy

W=EFE —s— ¢
2
nry

v

is the absorbed radiation energy per unit surface of the test plate. From the
relative error the correction to be applied to the measured reflection coeffi-
cients p' 1is

€€, COS U

Qt AT

: W
The temperature increase AT, which the surface of the plate undergoes after
45 seconds with constant heating W, must also be known. This increase is ob-
tained by solving the one-dimensional nonsteady heat conduction problem with
the initial and boundary conditions

AT =0 for t

o(at) _¥W
[ ox ]X?O A

where x 1s the penetration depth in the plate and t 1is the time. In the case
of the investigated surfaces the correction is to be considered only for white
pine (heat penetration coefficient 400 Joule sec~ 2 ~2deg~1) and calorstea (heat
penetration coefficient 1700 Joule sec‘l/ deg and amounts to

A
o

and

For white pine

Npt 0.22 €€, COS U

]

(18)
For calorstea

Np? 0.057 €,€, COS U

)
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The numerical factor in the formulas is independent of the radiation load of the
surfaces, With the radiations used, the temperature increments AT in the case
of white pine and calorstea were 3.2° and 0.75° C, respectively, and the correc-
tions to be applied were of the order of 20 and 2 percent of the measured value,
respectively.

Finally, we also consider what errors are committed if a false emission
temperature or surrounding temperature is substituted in the computation of the

radiation outputs
Q= k(Té - Tﬁ)

The differential d4Q gives the change of Q <for a change dT.,, or dT,; of T,
and T, respectively, so that

aQ = 4-.1{(1‘2 aT, - T dTu)

Compared with Q = kTg, the relative error of the radiation outputs for falsely

substituted emission temperature is found to be

e _ , Me

Qg ~ T,

and for falsely substituted surrounding temperature

29 _, Ay (Ta)*
Q TU. Te

It is found that the emission temperature must be measured very accurately if
it is to be used as the basis for determining the emitted radiation. The meas-
urements were therefore conducted as relative measurements with reference to Qg

and Qp. The temperature of the surroundings on the contrary, for the emission

temperatures used, need be known with an accuracy of only about 20° C. In the
measurement of large radiation powers (10 to 100 uW) the excess temperature at
the soldered Jjoint of the thermocouple could have played a part as an error of
Ty,. However, Qe always remained within such limits that the excess temperature
of the joint did not exceed 5° C. This error is, therefore, negligible and very
accurate proportionality occurred between the thermoelectric voltage and the
measured radiation power.

15. Results of Measurements

For the six investigated diffuse reflectors, the reflection coefficlents
p! for various angles of incidence v were obtained first. The results for
paper, black-oxidized brass, white pine, and calorstea are plotted in the polar
diagrams of figures 10 to 14. The results for the anodically oxidized and sand-
blasted anticorodal sheet are plotted in semilogarithmic presentation in figures
15 and 16. The beam with incident angle v is, in the polar diagrams, always
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Figure 11. - Directional distribution of reflection
coefficlent in incident plane for white paper;
emission temperature, 905° C.
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Figure 12. - Directional distrilbution of reflection
coefficient in incident plane for black-oxidized
brass; emission temperatures, 520° and 910° C.
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Figure 13. - Directional distribution of reflection
coefficlent in incident plane for white pine,
irradiated at right angles to fiber direction;
emission temperature, 910" C.
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Figure 14. - Directional distribution of reflection
coefficient in plane of incidence for calorstea
(steatite substance); emlssion temperature, 905° C.
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Figure 15. ~ Directional distribution of reflection
coefficient in incldent plane for anodically
oxidized anticorodal sheet; emission temperature,
92¢° C.

assumed to be incident from the left. It is also found that in the case of
matte, strongly scattering surfaces in the direction of the specular reflection
are much preferred. The most diffuse reflection is obtalned by fibrous or porous
materials, like paper, wood, and fire-resilstant stone. The black-oxidized brass
with its more compact surface shows reflection coefficients that rise strongly in
the direetion p = v. Otill more strongly dependent on u are the p' values
of the two investigated treated anticorodal sheets, which closely approach the
specular reflector.

The reflection distributions in the cases investigated approach those of
specular reflectors the flatter the incidence of the radiation (i.e., the greater
the value of v). The effect is seen in table I through the reflection coeffi-
cients p' for the direction of the specular reflection (up = v), which rapidly
increase with the incident angle. The phenomenon can be well observed by the
naked eye at emission temperatures above 6000 C. For glancing incidence (v al-
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Figure 16. - Directional distribution of reflection
coefficient in incident plane for sandblasted
anticorodal sheet; emission temperature, 920° C.

most 900), an unsharp mirror image of the radiation source on the test plate is
seen in the direction of the specular reflection instead of the blurred reddish
shimmer.

The effect of the emission temperature on the reflection properties was in-
vestigated on the surfaces of both white paper and black-oxidized brass. In
both cases the distribution of the reflection coefficients at low emission tem-
perature approaches somewhat more that of the specular reflector. This can be
clearly explained on the basis of the wave character of the heat radiation. The
radiation of low emission temperature is, according to the Wien displacement law,
richer in the longer waves, for which the fine structure of the surface does not
show up (i.e., the surface appears more even, smoother and more mirror like).
The absolute magnitude of the reflection coefficient p' varies corresponding
to the color of the reflector, 1f the emission temperature is raised to such an
extent that the emitted radiation contains an increasingly larger proportion of
visible wavelengths. Thus, p' 1Increases for an increase of the emission tem-
perature from about 5C0° to gbout 900° C for white paper but, decreases for the
case of the black-oxidized brass sheets.

A clear comparison basis for evaluating a reflector is given by the normed
450 distributions in figure 17. They are obtained by redrawing the polar dia-
grams of the distributions of p' for the incident angle v = 450 and for the
incident plane in such manner that the distance in the diagram corresponding to
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White pine; emission temperature, 910° C.

Calorstea; emission temperature, 905° C.

White paper; emission temperature, 905° C.

White paper; emission temperature, 535° C.

Black-oxidized brass; emission temperature, 910° C.

Black-oxidized brass; emission temperature, 520° C.

Sandblasted anticorodal sheet; emission temperature,SZOo C.
Anodically oxidized anticorodal sheet; emlssion temperature, 920° C.
Specular reflector (for comparison).
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Figure 17. - Normal directional distributions of reflection coefficient
in incident plane for v = 45°.

the reflection coefficient in the direction of the specular reflection (u = v,
¥ = 0) is the same for all reflectors to be compared. The figure shows that
the investigated six surfaces cover the entire span between the strongly scat-
tered and the almost specular reflectors.

The measurements of p! can be used for the evaluation of the integrals
(7) from which p,, and therefore, also the absorption coefficient (1 - p,)
of the direction v, is obtained, and finally by repeated integration according
to (4) for the determination of the total absorpbion coefficient (1 - p). The
evaluation, to be conducted graphically, of the triple integral assumes a large
number of measured p' values and a considerable amount of computation, but has
the advantage that in this manner absorption coefficients can be determined that
cannot be obtained from emission measurements because the investigated surface is
not suited for the high emission temperatures encountered (determination of
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(1 - p) of paper for an emission temperature of 900° C), or has other physical
properties at these temperatures.

For white paper and black-oxidized brass the required measurements of p!
for the evaluation of (7) were made outside the incidence plane for the two in-
cident angles v = 300 and 60C and for the reflection angles up = 159, 300, 450,
600, and 75° for each of the two v-values. Figure 18 gives the result for white
paper and for v = 30°. The reflection coefficient p' is plotted as a func-
tion of ¥ with u as parameter. The first integral of (7) is obtained by
planimetering the area p. The second integration leads to the reflection coef-
ficient p, and, thus, to (1 - pv). To the angle of incidence v = 0 (normal
incidence) there corresponds a rotation-symmetrical direction distribution of
p', with the surface normal of the test plate as axis of symmetry, and the re-
flection coefficient Py is obtained for the direction of normal incidence

7 T
.6\ 1
5 N
\T\\O\\ /‘=150
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91 \\\ 300
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o | 450
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60°
2 <
. ’\ \ N
1 n\\\\\‘k\‘(/75o
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0 300 60° 900 1200 1500 180°
¥
Figure 18. - Reflection coefficient p' for white paper;
angle of incidence ¥ = 300°; emission temperature,

905° C.
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through a single integration by substituting p' directly in place of p in
the second integral of (7).

n/2
Py=0 =1 - (1 - pp) = f p' sin p du (19)
0

The determination of the absorption coefficient (1 - pp) according to equation
(19) was carried out for all investigated diffuse reflectors. Finally, for white
paper and black-oxidized brass, there are three (1 - p;) values for the three
incidence angles v==Oo, 300, and 60°. The Tirst two angles coincide within the
accuracy of the evaluations. The knowledge of the fundamental trend of the di-
rectional distribution of the absorption coefficlents in the case of nonmetals,
for example, according to the measurements of the emission coefficients of

E. Schmidt (ref. 2), enables their reconstruction with the aid of the three
measurement values. The integral

/2
(L -p)=1- / p, sin(2v)dv

0
then leads to the absorption ratioc (1 - p) of the entire radiation.

The four tested bright-metal surfaces are specular reflectors. A diffuse
portion of the reflected radiation could not be confirmed and therefore may be
neglected. According to the results of section 13, a test point here gives the
absorption ratio 1 - p, for the angle v to the surface normal. The measure-
ments, as shown in figure 19, for the polished iron sheet, led to the already
familiar directional distributions of the absorption coefficient for electrically
conducting materials, as required by the electromagnetic theory of light (refs.

1 and 2) and as confirmed by the measurements of the emission coefficients by

E. Schmidt (ref. 2). In accordance with these results the absorption ratio for
smooth metal surfaces strongly increases at large angles to the surface normal
and again drops only in the neighborhood of the glancing incidence. The large
scatter of the test points is explained by the circumstance that the absorption
coefficients are obtained through the formation of the differences 1 - p,, which
are small compared with the test values. The increase of the absorption ratios
with rising emission temperature, likewise predicted by the theory, is confirmed
according to figure 20.

The bright-rolled somewhat tarnished anticorodal sheet is almost a specular
reflector; the diffusely reflected part amounts to about 2.5 percent of the in-
cident energy stream while, depending on the emission temperature, 80 to 90 per-
cent undergoes specular reflection. The observation with the naked eye shows a
sharply defined mirror image of the radiation source on the test plate upon which
reddish haze is superposed. The difference 1 - Pvgpec, is to be reduced fur-
ther by 0.025 (diffuse part) in order to obtain the total absorption coefficient
(1 - p,), but gives qualitatively good information. In figure 21 the quotient

(1 - stp>/<l - pnsp) is plotted in the polar diagram against the angle v to
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Figure 19. - Directional distribution of absorption coefficient (1 - py)
for polished iron sheet at various emission temperatures. Test plate

at room temperature.
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Figure 20. - Absorption ratio of total incident reflection (1 - p) and of
radiation in direction of surface normal (1 - pp) as a function of
emission temperature for polished metal surfaces. Test plate at room
temperature.

the surface normal. This figure gives information on the directional distribu-
tion of the absorption coefficient at various emission temperatures. The tar-
nished anticorodal sheet absorbs the radiation of low emission temperature like
the bright metal, while with Increasing emission temperature the directional dis-
tribution, according to figure 21, increasingly approaches the directional dis-
tribution for nommetals. The thin oxide skin on the surface is evidently barely
"noticed" by the longer waves of the radiation of lower emission temperature,
while radiation of higher emission temperature is the determining factor for the
reflection behavior for the short-wave. Figure 22 finally gives the variation
of (1 - pnsp) referring to the plate nmormal, and of (1 - pgp) referring to all
directions of the half-space, as a function of the temperature T, compared with
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Figure 21. - Comparison of reflecting behavior of rolled-bright,
slightly tarnished anticorodal sheet at angle y to surface
normal to that in direction of surface normal. Test plate at
room temperature.
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Figure 22. - Dependence of radilation properties on emission temperature.
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the absorption coefficients (1 - pp) and (1 - p) of the polished anticorodal
sheet.

A1l measured gbsorption coefficients refer to a test plate temperature of
10° to 20° C and to the given emission temperatures. According to the Kirchhoff
law these absorption coefficients agree with the emission coefficients if we
have the case of gray radiators. The investigated technical surfaces are, how-
ever, only approximately gray radiators.

For smooth surfaces, according to the electromagnetic theory of light, the
absorption coefficients for the total radiation depend on the emission tempera~
ture (for monochromatic radiation, on the wavelength) and on the physical prop-
erties of the material, namely on the index of refraction for electrical noncon-
ductors and on the specific electrical resistance for metals (see refs. 1 to 3).
Since the material properties may also be temperature~dependent, the temperature
of the test plate enters as parameter. Although the polished metal surfaces ap-
pear to approximate very closely the 1dealized assumptions of the electromagnetic
theory of light, the measured absorptlon coefficients here generally lie higher
and the experimental ratios (1 ~ p)/(l - pn) lie lower than those demanded by the
theory. Evidently, the invisible oxide and water films, which always exist at
room temperature, become appreciable here.

The directional distributions of the emission and absorption coefficients,
like their absolute amounts, are also dependent on the emission and plate temper-

ature (refs. 2 and 3).

For the directional distributions of the reflection coefficient p' it may,
on the contrary, be assumed that these are affected only by the emission temper-
ature of the incident radiation but not by the plate temperature, since the
structure of the surface, which is independent of the temperature, occurs here as

"material property.”

As is customary in technical radiation exchange computations, we shall in
the following paragraphs always assume gray radlators, for which the Kirchhoff
law holds without restriction. Accordingly, no distinction is to bz made be-
tween emission coefficient and absorption coefficient and in the problems of
heat transfer we shall only speak of the "emission coefficient" ¢ = (1 - p).

If the temperatures of the radiating surfaces differ considerably and their ra-
diation properties are dependent on the temperature the choice of the values to
be substituted for p and ¢ must be decided for each case, For one of the
measured surfaces, for example, its found absorption coefficient is to be sub-
stituted as ¢ 1if at low body temperature (room temperature) it undergoes ra-
diation exchange with a surface which has one of the emission temperatures that

are employed.
16. Surface Element Model
The directional distributions of the reflections found were all determined

in a purely empirical way. We now ask whether the results can also be explained
by computation. Is there an elementary law for the reflection mechanism that

leads to the obtained results?
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The mathematical model described herein (the "surface element model") gives,
with good approximation, the reflection behavior for surfaces that approximate
the specular reflector and for directions of reflection that lie near the direc-
tion of the specular reflection. It is based on the laws of radiation optics
and neglects the wave character of the heat radiation. We imagine the surface
to be composed of small surface elements equal to irregularly arranged mirrors.
A single one of these surface elements dFy 1s, according to figure 23, assumed

to have the surface normal n that makes an angle o with the surface normal
of the reflector. The ray e arriving with incidence angle v 1is specularly
reflected by dF, with reflection angles u and V¥ in the direction r; e and
r make the angle p with the normal n; the reflection cvefficient for the
specular reflection that tekes place is denoted by pB, which may depend on 8.
The surface is assumed isotropic, that is, the distribution of the surface ele-
ment does not depend on the angle v; all angles 71 are equally possible. With
regard to their angle of inelination, the dF, are distributed according to a
distribution function &(a) characteristic for the reflector under considerstion.
Let the part dF(a) of the surface F of the test plate considered have an angle
of inclination that lies in the interval o . . . a + da.

ar(a)

o(a) = T dn (20)

Integration over all angles of inclination gives

‘/f“/z ® da =1

0

Of the incident energy stream per unit area E,, the amount reflected by the
surface element with the normal direction a,y in the interval (da, dy) is

dR = E,pg ®(a)do gl
U ) T
g g
Part of dF, Part of dF,

in integral do in integral dy
With the solid angle element
d = sin p dp dy

the reflected energy stream per unit area and unit solid angle is

and according to definition (5) in section 11 the reflection coefficient is

v o2x AR
PP T E, sin w du av
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Incidence plane

Reflecting
surface

Figure 23. - Angle notations for surface element model.

With account taken of the expression for dR set up previously there is ob-
tained for p':

o(a)ep aa ar
“sin u  du av (21)

The functional determinant (Jacobian) A of the mapping of one coordinate sys-
tem (p, V) into the other system (a,Y) describes the relation between the two
surface elements du dv and do dy as

A= o oF - du ay (22)
S O
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In terms of equation (22) the expression for the reflection coefficient reads

o - (23)

To derive the relations between the introduced angles we substitute the

three unit vectors €, ¥, and ¥ in the directions e, r, and n, whose compo-
nents in the (x,y,z) coordinate system are as follows:

Vec- x-Component y~Component z-Component
tor

- .

e - sin v 0 cos v

-> . . 03

r sin p cos ¥ sin u sin ¥ Cos n

> . . Y

n sin o cos v sin o sin v cos a

From the condition of specular reflection the three vectors must lie in a plane.

The vector n can therefore be presented as a linear combination of the other
two. PFrom figure 24 the relation can be read as:

€+ T =2 cos BY (24)

taking account of the fact that 1 must be a unit vector. Equation (24),
written in component form, gives the following system of equations:

- s8in v+ sin pcos ¥ = 2 cos B 8in o cos ¥
sin u sin ¥ = 2 cos B sin « sin ¥ (25)

cos v+ cos pu =2 cos B cos a

Q
7 | 2
i Q|
T S
ale

Figure 24. - Relations between
three unit vectors.
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From these three equations, B, W, and V¥ can be eliminated. The two terms
sin v and cos y are first brought on the right side, the three relations are
squared and added and there is obtained
cosB - cos B(cos o cos v - sin o sin v cos 1) =0
The case cos B =0 may be excluded since for B = ﬁ/z the reflected ray must
fall in the prolongation of the incident ray e and must go through the reflect-
ing surface. The angle B is obtained as
cos B = cos a cos v - 8ln o sin v cos T (26)
From the third equation of equation (25) p can now be computed as
cos u = 2 cos afcos @ cos v - sin a sin v cos 1) - cos v (27)
To eliminate V¥ we bring the term sin vy in the first equation of the system
(25) on the right side, and then divide the second equation by the first equation
so that,

2 sin a sin yv(cos o cos v - sin a sin v cos 7)
2 sin o cos Y(cos @ cos v - sin « sin vy cos Y) + sin v

tan ¥ = (28)

The functional determinant A is to be determined according to equation
(22) with the aid of transformation formulas (27) and (28). We consider first
the special case of the incident radiation normal to the surface. The normal in-
cidence is distinguished by v =0, that is, cos v =1 and sin v = O. The re-

lations (26) to (28) then simplify to:
cos B = cos aq; B=a

2 2a (29)

cos y = 2 cos®a - 1 = cos 2a; v

tan ¥ = tan 73 ¥

I
-

The functional determinant A assumes the value

2 0

A= =2

o 1

If we restrict ourselves with the approximation
sin p = sin 20 =~ 2a

to small deflection angles a, that is, to directions that are not far removed
from the direction of specular reflection, the reflection coefficient i1s ob-

tained as

_ ®(@)DB

o' = = (30)
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In the general case of vy # 0 we introduce further approximations to simplify
the computation. Since the surface element model can be used only for directions
in the neighborhood of the specular reflection, we again assume the angle « 1o
be small:
sin o = o
cos @ =~ 1 (31)
af << 1 therefore al ~ 0

Expressions (26) to (28) now beacome:

cos B =cos v -a sin v cos 1
(32)

cos | cos v - 2o sin vy cos v

2a sin y(cos v - o sin vy cos 1)
20 cos Y cos v + sin v

tan ¥ = (33)

We assume further that we are situated neither in the neighborhood of glancing
incidence (v close to 90°) nor in the neighborhood of normal incidence (v
small), so that we may assume o << sin v and a << cos v. For small deflec-
tion angles o and v % 0, ¥ also beccmes small so that the tangent may be re-
placed by the arc. Relation (33) then further simplifies to

¥ = 20 sin ¥ cot v (34)

With the transformation formulas (32) and (34) the partial derivatives of u and
¥ with respect to o« and Y are obtained as

op 2 sin v cos ¥
o sin p

3 2a sin v sin v

S T ° sin p

= 2 sin v cot v

= 20 coOs Y cot v

slg e

and the functional determinant becomes

4q, Ccos vy
A = ———
sin v
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Substituted into equation (23), this gives the expression for the reflection
coefficient as,

Q(@)DB

R
4, COS Y

(35)

which for v = 0, goes over into the formula (30) for normal incidence. There-
fore, it is to be expected that the approximation formula (35) fails only in the
neighborhood of glancing incidence.

The validity of the surface element model was tested on the two surfaces of
the anodically oxidized and sand blasted anticorodal, that is, for two surfaces
that closely approximate the specular reflector. If o 1is assumed to be small,
B moves according to the first equation of equations (32) in narrow limits and
the reflection coefficient Pg can be replaced by the constant value p, that
depends only on the incidence angle. From the measurements the following expres-
sion 1s to be determined:

o(a)p, = 4op' cos v

and plotted for each incidence angle as a function of the angle of inclination
a. The surface element model may be considered as valid if the various curves
can be brought into coincidence through a normalization, by substituting, for
example, the ratios pv/p45 of the reflection ccefficients so that the curves
of ®(a)p45 recomputed for all incidence angles coincide with the curve for

y = 450, As can be seen from figures 25 and 26, this occurs for the two sur-
faces considered. The check is here restricted to angles of inclination o up
to 12° at most, for which the introduced approximations of formulas (31) may
st1ll be substituted. The points for the lncidence angle 60° scatter somewhat
more strongly than the others because the simplifications assumed at the basis
of the theory are no longer admissible in the neighborhood of glancing incidence.
Each of the two surfaces has its own 90(a) distribution. The ratios pv/p45 of
the reflection coefficients valid for the two test plates are as follows:

Anodically oxidized, anticorodal:

y = 30° 459 60°
pV
— = 1.294 1 0.825
Pas
Sandblasted, anticorodal:
v = 10° 30° 45° 60°
pV
— = 1,258 1.091 1 0.9186
P45
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Figure 25. - Distribution of surface elements for

anodically oxidized anticorodal.

The surface element model glves a good idea of the directional distribution
of the reflection coefficients in the neighborhood of the direction of the specu-
According to formula (35) the distribution of p!
ally symmetrical with the directilon of the specular reflection as axis of sym-

is rotation~
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Figure 26. - Distribution of surface elements for

sandblasted anticorodal.

2. HEAT TRANSFER FOR TWO-SURFACE SYSTEM

21. Definition of Two-Surface System, Assumptions for Computation

With the aid of the illustrative data gained on the directional distribution
of the reflection coefficients we now turn to the computation of the heat trans-

fer, taking account of the reflections.

o)

With the exception of a few considera-



tions in section 4, we shall restrict ourselves to the case of two surfaces that
exchange radiation with each other. Each of these two surfaces is assumed to
have the same temperature and the same radiation properties (emission and reflec-
tion coefficients) at each point. In regard to the geometrical arrangement of
the surfaces, which in general are curved, we assume that from each element of
the one surface only parts of the two surfaces F; and Fs can be seen. Thus,

F, and F, form a closed system with regard to the radiation exchange. We

shall term a system with the properties just described as a two-surface system.
The two surfaces may meet at a boundary line (fig. 27(a)) or be spatially sepa-
rated from each other (fig. 27(b)).

The computation of the heat transfer in the case of the two-surface system
cannot be accurately carried out except for a few geometrically simple cases.
We are forced to make approximatling assumptions.

Except for polished metals, almost all surfaces have a directional distribu-
tion of the emissions, which does not deviate strongly from the Lambert cosine
law. We shall therefore always assume this law for the emission, but we shall
take into account the directional distribution of the reflections. The following
theory is also valid, however, without the assumption of the Lambert cosine law
if in place of the solid angle ratio ¢, there is substituted an incident radia-
tion beam that is to be determined from the emission law and the geometrical ar-
rangement.

Each emitted amount of energy 1s first reflected on one of the two surfaces
of the two-surface system and then reflected, each time more weakly, a second
time, a third time, and so forth. The first reflections contribute most of the
energy. We shall make the assumption that the second, third, and further re-
flections are locally and directionally distributed in the same manner as the
first.

Figure 27. - Examples of two-surface systems.
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22. Condition from Second Fundamental Law of Thermodynamics

Let the surface ¥F] of a two-surface system have the temperature Tj;. Ac-

cording to the Stefan-Boltzmann law the emitted radiation energy of the surface
F; and all the resulting reflection energies are proportional to (T/100)4. The

same condition holds for the surface Fp. The exchanged heat quantity per unit
time can first be expressed in the form

T, \4 To \%
@2 = kil755) - *¥2\ 100

The second fundamental law of thermodynamics requires the vanishing of Qo if
the temperatures T; and T, are equal; therefore,

k1 =ko =k

The radiation energy exchanged between the two surfaces of the two-surface sys-
tem may therefore always be written in the form

L 4 4
o )

23. Beam Coefficient, Solid Angle Ratio and Reflection Factor

The surface Fj of a two-surface system emits the radlation energy

4
T1
4 = FlOS€l<I66> (37)

Of this amount the fraction q,P12 strikes the surface F, while qy97 Te-
turns to the surface Fy. The two coefficients ¢q5 and ¢17 are termed the

beam coefficients of the surface Fj1 with respect to Fo and ¥F3, and depend
both on the geometry of the two-surface system and on the directional distribu-
tion of the emissions of the first surface. Similarly the beam coefficients

Pp1 and @pp are defined. The energy stream gqq, according to the definition
of the two-surface system, is divided between the two surfaces F; and Fo. The
beam coefficients @17 and @75 and similarly ©¢pq and ©@pp satisfy the re-
lations

!
[

P11 F P12 = (38)

]
[

P21 t Ppp =

U2




According to our assumptions the two surfaces of the system emit according
to the Lambert cosine law., The coefficients are therefore identical with the
solid angle ratios that can be determined from the relation

1 cos Vl CcOS 'V2 aF aF ( )
- 39
P12 = 7 T 1 2
F1 YFp

where Fj; and F2 denote the surface areas of the two-surface system, r is
the distance between the two surface elements dF; and dFy under considera-
tion (fig. 28) and v] and vy are the angles between r and the surface nor-
mals n; and np.

On interchanging the indices in equation (39) the expression of the double
integral remains unchanged. For the solid angle ratios ¢, and s, the fol-

lowing relation therefore holds, so that
F1012 = Fabzy (40)

which is not true for generally defined beam coefficients. If ¢ denotes a
general beam coefficient the theory of this section remains valid until equation
(40) is introduced into the equation.

The surface T, absorbs the fraction ¢q19,565 fLrom the energy stream
4191, radiated by the surface Fl while an amount gqi9P1,ps 1s reflected. The
part qi®y1pppfi1p1 agaln reaches the surface ¥y, and the part g 91502155
reaches the surface TFp. The reflection coefficient or reflection factor f17
gives that fraction of the energy stream reflected on the surface Fp that is
reflected back on the surface F; under the assumption that the reflection is
produced by a beam from the surface Fq. It depends on the geometry of the two-

surface system, on the directional distribution of the emissions of both sur-
faces and on the directional distribution of the reflections of the reflecting
surface. The middle index J of the reflection factor fijk denotes the sur-
face j (in the case of the two-surface system 1 or 2) whose reflectlons are
being considered, the first index 1 gives information on the source of the
incident energy stream that gave rise to these reflections, while the last index
k gives the "address" to which the reflected part under consideration arrives,
In the case of the two-surface system 8 such reflecting coefficients occur.
Since the reflections of a surface can only be thrown back to the two surfaces
F1 and Fo, each two coefficients whose indices agree in the first two nmumbers

add up to 1:
1

T111 + fi12
Fonn + Froo = 1
121 122 (41)
fo11 * fo12 =1
Togy + fopp =1
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In general 1t is not immaterial whence the reflected radiation originates, that
is
fi21 % f221, and so forth

In general, the reflection factors for the second, third, and further re-
flections do not agree with those that determine the distribution of the first
reflections. In accordance with the approximation stated in section 21, in
considering the second, third, and further reflections the same reflection coef-
ficients are substituted that hold for the first reflection stages.

24. Heat Transfer for Two-Surface System

With the aid of the introduced notations the radiation exchange process
may now be further investigated. Scheme I shows the splitting up of an energy
q; emitted from a surface F; 1in the first and second reflection. Scheme IT

would have to be supplemented by adding a second scheme at the same stage with
interchanged indices and serves for investigating an (i+1)th reflection starting
out from the surface ¥y to the (i+2)th. As an end result we are interested in

the heat quantity per wnit time, which on the basis of the emission qy of the
surface Fj, 1is transferred to the surface Fp. This quantity is obtained by
summing all energy streams that are absorbed on the surface Fgz. As shown by
the two schemes, this sum is made up of the amount qi9ip€p, absorbed after the

emission and of the summation of amounts pg%) and pé%) reflected by Fo,
multiplied by the factor e5/py, so that

’-w 0
c . .
2 (1) (1)
9 = QP t § : Pig’ ¥ 2 : Pz
2
i )

With the definition

. 3
:E : (1)
511 = P11
i=1
o0
B (1)
812 = P
i=1 # (42)
o0
_ (1)
Sp1 = P2y
i=1
[s¢]
_ EE; (1)
Spp = P2o
i=1 J
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Ql may be written in the form

€2
Q = uiPizez + (S12 + 822) (43)

The sums S7p and Spp must be computed first. The recursion formulas for the
amounts p;j are shown on scheme 1T,

(i+1) _ (1) (1) B
Py 77 = Py Ty99P) P21 T201Py
(i+1) _ (1) (i)
Pip = Pyy TyiaPy T Poy TP
> (44)
(i+1) _ (1) (1)
P31 = Pip'fqp1Pp * P3a To1Py
(i+1) _ (1) (1)
Pog T P TiopPe * Pop Tanefs p

We consider each of the relations (44) written with successive index i. Adding
these formulas, there is obtained from each recursion formula one of the four
followlng linear equations for determining the sums Sjk:

(1) W
511 - P11 = S11fi1ae *+ S21fe1ie;

(1)

S12 - P12 = 8111122 + S21f212P2
(45)
3 <l) = 3.1 + SooT
21 - P21 = ®12%121P1 22t221P1
(1) _
Sop = Pog’ = S13F100P2 + Sppfooops
The first terms pgi) of the sums Sjk are obtained from scheme I:
(1) > N
P11 = 91997%797P7
(1) .
Pip = $P197712P1P2
(1) . (48
P31" = 41P12T121P1P2
(1) _ 2
boz’ = 419012003 J
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The solution of the system of linear equations (45) requires a tedious computa-
tion but otherwise offers no difficulties. Therefore, the results for the ex-
pression Sy, + Sp, may be given immediately. With the abbreviated notation

N = (1-F171p1)(1 = f20202) = pyPp(f11007 + 15 = T21201)(Tpp10p + T1p1 = F12105)

(47)
this expression reads, with account taken of relations (41):
(812 + 822N 911132
—— = pPof (1 =~ £99707) + (L = foonps + Fionp,) ———— p
12P2a1 2f122 111P1 222P2 122P2 P17 1
= PPy (f11207 + Fopp = To107)(fop10p + T1p = f15705)

We write Ql in the form

4
T
1
Q1 = q1P12¢2K1 = F1@1205€1€2<155> Ky

where the correction factor Kl, according to equation (45), assumes the value

S12 * Sp2

Kl:l+
A1P12P2

After a few further elementary transformations, taking account of equations (38),
(41), and (47), there is obtained for Xj:

9115112
Ky = 1+ pl(‘“““" f111 (48)

and in analogous manner, if ¥, 1s assumed as the emitting surface, by inter-

S
)
+

e}
AV
TN
H
}_l
[Ne}
AV
]
.
AV
e}
N
o=
—

changing the indices, the heat transfer

4
i
2
Q@ = dg¥Pa1€1Kz = F2@210s€1€2<15§> Ko
(49)

1 P22f221
Kp =5 [+ pr(fer1 - f112)] [1 * pz("@i’" - fzzz)]

If both surfaces of the system are emitting, the amount of heat transferred from
Fl to F2 per unlt time

U2 =@ -
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must, according to the condition derived in section 22 from the second law of
thermodynamics, be capable of being presented in the form of equation (36). Ac-
cordlngly, the expressions for Q3 and Qp must agree except for the factor
(T/lOO At this point we shall Introduce the assumption of the Lambert cosine
law for the directional distribution of the emissions and, therefore, relation
(40) in the computation. Except for the factor with the temperature T1. or Tz,
the agreement of the expressions for Q; and Qz exists if K; and Ko coin-
cide, This, as the comparison of equations (48) and (49) shows, is not in gen-
eral the case because the approximating assumption according to which the second,
third, and further reflections are distributed locally, and with respect to their
directions in the same way as the first reflection, contradicts the second law
of thermodynamics. The validity of the second law is theoretically an exact re-
quirement. We postulate, therefore, the equality of K; and Kz and through
comparison of the formulas (48) and (49) we obtain the relations

|

®11f112 = 912211
(50)

Po2fop1 = P21f922

which connect four of the eight reflection factors with the solid angle ratios.
The reflection factors are, however, already determined by the assumed reflection
laws and do not in general satisfy the conditions of equation (50). The failure
to agree is connected with the error that is committed in the chosen approxima-
tion and vanishes if the second, third, and further reflections are actually
distributed like the first. Of the eight reflection factors of the two-surface
system, four can be eliminated with the aid of equations (41). We make the as-
sumption that two of the remaining four unknowns, namely, f1p1 and f212, are
determined with the aid of the reflection law, while the last two are to be de-
termined from equations (50). Their value does not agree with those that would
be obtained according to the direct determination from the reflection law. The
deviations correspond to the error of the approximation and make small correc-
tions to the reflection factors necessary so that the approximating assumption
made 1s compatible with the condition from the second law of thermodynamics.

The radiant energy exchanged between the two surfaces of the system is finally

obtained as
4
T To
Q12 = F1912Cs €1€2K[<1oo) - <i55> ] (51)

with the factor K, taking account of equation (41):

_ [t - o1(fa1p - £132)][2 - pa(figy - f221)]
(1= 97107 (1=Fpp00,) = 0105(17501 * To15 - Tp15P1)(Tag1Pp + Tip1 = F1p1P2)

(52)

K has the significance of a correction factor to be applied to the Nusselt ap-
proximation. TIts value represents the effect of the reflections on the heat
exchange.

b7



25. Two-Surface System with Convex Surface TFq

The computation of the heat exchange is considerably simplified if one of
the two surfaces of the system, for example Fp, is convex. The emitted and re-
flected radiation from the convex surface ¥F; excusively reach the surface Fa.
Half of the solid angle ratios and reflection factors are therefore given with-
out further computation:

P17 = Ta31 = To11 =0
P12 = f112 = fo12 = 1
The relation (40) between the solid angle ratios goes over into
¥
1
Po1 = = (54)
21 F,

and, therefore, the computational determination of a solid angle ratio from the

geometry of the two-surface system becomes superfluous. Of the conditions (50)

the first condition becomes trivial. The radiation energy exchanged between the
two surfaces is

T, \* /T, \*
1 2
Qo = F1Cgeqe0K [(m) - (‘ib‘ﬁ) ] (55)
with the correction factor as compared with the Nusselt approximation:
1 - pa(fi21 - f221)

K= 1 f (f o105 + T -':f'_-:E) (56)

= ip22P2 - P1P2lI221P2 121 - t121P2

26. Reflection Laws

not contain assumptions in regard to the law

The preceding computations do
of reflection that must be used to
mination of the reflection factors

determine the reflection factors. The deter-
on the basis of the empirically obtained re-

flection laws, that is, with the aid of the measured directional distributions

of the reflection coefficient p', involves an almost insurmountable amount of
computation which - except perhaps for several geometrically simple cases - makes
this process appear unsuitable.

Another process leads more simply to the goal: We assume mathematically
gsimple reflection laws as the basis of the computation of the reflection factors
and, hence, of the radiation exchange. The obtained results, or rather the re-
flection factors arising from the reflection laws, can be superposed in order to
attain as good an approximation as possible to the actual situation. In the two
following sections (3 and 4), two reflection laws are more closely investigated.
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The first law is the law of specular reflection; the corresponding surfaces
are termed specular reflectors. The law states: TIf radlation energy falls on a
specularly reflecting surface at the incidence angle v, the nonabsorbed energy
stream is reflected entirely in the incidence plane (¥ = 0), and with the angle
of reflection u = v.

The counterpart of the specular reflection is a reflection law that pre-
seribes a directional distribution for the reflection coefficients, that is in-
dependent of the direction of the incident ray, and therefore represents the
most extreme case of a strongly scattering diffuse reflector. This is most sim-
ply realized mathematically through the law of Lambert reflection, which assumes
the reflections to be distributed according to the Lambert cosine law. These
reflections may now computationally be treated like emissions. A surface that
reflects according to the Lambert cosine law is termed a Lambert reflector.

Specular reflectors occur in nature, for example, as polished metal sur-
faces. The Lambert reflector on the contrary is an ideal picture which, it is
true, 1s very nearly approximated by the planed and polished white pine board,
but which however (as is to be concluded from the measurements), is not quite
actually realized. The two chosen reflection laws represent the extremes be-
tween which the measured directional distributions of the reflection factors can
be ordered. From superposition of their reflection factors results may be ex-~
pected, which with good approximation, give the heat exchange by radlation.

3. SPECULAR REFLECTION

The following computations of the reflection factors for both surfaces of
the two-surface system are based on the law of specular reflection according to
which, of the radiation energy E, dincident at the angle v, the nonabsorbed

energy stream E,p, 1s reflected with the angles of reflection p = v and

¥ = 0. In addition to the reflection law the assumed emission law, namely the
Lambert cosine law, which is assumed valid for the two surfaces, enters in the
reflection factors.

The surface Fj1 of a two-surface system is assumed to send out rays in all

directions, which may be combined in purely parallel beams. According to the
Liambert cosine law of the emission all these beams have the same intensity over
their cross section. In the visible region 1t would be observed that the surface
¥, radiates at each point and from all directions with equal brightness. We now

consider specifically an emission direction R (fig. 29). The rays emitted from
F, and specularly reflected on Fo, partly return to the surface ¥y and partly

reach Fs. The proportion of all the rays of the beam that return to the sur-
face F; 1s equal to the ratio of the cross section of the part of the beam re-

flected toward F; to that of the entire beam and is termed the direction-
dependent reflection factor f{57, which is coordinated with the direction R.

The reflection factor lel is obtained from it - as an averaged value - through
integration over all directions of space, so that:
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Figure 28.

Figure 29.
_ 1 (I8
£ =4 f (Fm>cm (57)

In equation (57) f' denotes a direction-dependent reflection factor and £ 1its
corresponding averaged reflection factor, Fg is the cross section of the bundle

of rays in the direction R and F, 1s the cross section of the bundle averaged

over all directions of space according to:

1
F, - JFp a0 (58)

Tn the case of a configuration with rotational symmetry all planes through
the axis of rotation are equivalent and the different directlons of the space can
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be characterized by a single direction angle, namely, the angle 7Y between the
axis of symmetry and the direction R. The integral (57) simplifies to

I
Fg
£ o= —é— / f‘(-l;;—>sin T ar (59)
m
0

If a two-surface system consists of two general cylindrical or prism sur-

faces extending to infinity with parallel generatrices, all planes at right
angles to the generatrices are equivalent, and we speak of a two-dimensional
problem. The direction R can be fixed through an angle of rotation ¥y and
the integral (57) goes over into the form

27t

_ 1 B
£ == £ (Fm>dY (60)
0

The reflections can be followed along in the projection of the system on a plane
normal to the generatrices, since the law of specular reflection for rays that
are oblique to the projection plane also holds for their projectioms.

In sections 31 to 34, four examples of two-surface systems are considered.
Surface Fjy is a spherical or circular cylindrical surface, hence, convex, and
therefore only one reflection factor (f121) need be determined, on the basis of

the reflection law. TFurther, the cross section of a parallel beam of rays is-
sulng from ¥, 1s constant and therefore coincides with the averaged cross sec-

tion F,. The ratio Fp/F, 1is equal to 1 for all directions of space. The com-
putation of the direction-dependent reflection factors fiZl is conducted ana-
lytically in several cases, and in the other cases with the methods of projective

geometry. The latter method, in the case of geometrically involved arrangements,
is probably the only possible method.

31. Sphere and Plane Wall

A sphere, representing the surface Fj of a two-surface system, exchanges
radiation with a plane wall. The second surface Fp encompasses both the wall
and the infinite half-space above it. The center of the sphere is 4 = R dis-

tance from the wall (fig. 30).

We first compute the direction-dependent reflection factor fiZl' The prob-

lem is rotationally symmetrical, with the normal to the wall surface through the
center of the sphere as axis of symmetry. A beam of rays starting out from the
sphere with the direction angle 7Y (indicated in fig. 31 by the three rays

s1, Sp, and sz) has a circular cross section and is thrown back by the wall as
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a parallel beam with constant intensity and equal cross section (rays sj, sJ,
and sé). The sphere extends into the reflected beam by the amount a, which
through elimination of the distances M to ﬁK, is obtained from the following
six equations:

a=R-CM CM = MB sin Y
MB = R® - EB EB = FA
FA = MA - R® R = MA sin Y

which can be easily read off from figure 31, so that
a =2R(1 - & sin v) (81)

The sphere intercepts the hatched part in figure 32 from the reflected beam, and
the direction-dependent reflection factor fizl(Y) is equal to the ratio of the

hatched area to the total area of the circle #R®, Half the hatched area is the
area of a circular segment with half the central angle ¢ and is equal to

Fo = R(f - sin £ cos ()

from which the reflection factor is obtained as

2R

t —_—
121 RS

£ (¢t - sin ¢ cos t)

ENIN

In the preceding expression the angle ¢ 1is to be replaced by 7v. The relation
cos £ =& sin v

is obtained by formulating cos ¢ and then eliminating a and R with the re-
lation (61).

The reflection factor f57 averaged over all directions is found by
evaluating the integral (59), which in our example assumes the form

Y*
lel = % '{ [arc cos(6 sin ) - & sin Y‘\/l - Bz sinZY]sin v dr (62)

As upper integration limit there is to be put
T¥ = arc sin %

and not = since for direction angles v > v¥, the reflected bundle of rays no
longer strike the sphere and hence the direction-dependent reflection factor
vanishes. The reflection factor 927 1s a function of the nondimensional dis-

tance 0.
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Figure 32.

We consider first the special case ® = 1 for which the integral (62) is
considerably simplified:

/2
£ioq (B = 1) = & z i i a
121 = =% > Y - sin ¥ cos Y)sin v 4dv

The integration can be carried out in an elementary way and gives the result

1 4
f121(6 =1) = 5 - 3 ~ 0.0756
In the general case we remove the arc cos function in the first summand of

the integrand by partial integration:

arc sin 1/

COSZ)"

1|
f === -5 P ——
R E w/l - 32 sginZy

0
arc sin 1/8
-3 f sin®y~/1 - 8% siny dr

0

dy

We transform both partial integrals by the substitution

siny =t
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There is obtained

/1 - 82t2

1/8 1/5
1fx /1 - 2 -/1 - 8242 5
f121=E§'6/ woo o
0 0

The two integrals are elliptic., We seek to obtain the solution in the form of a
series expansion for the function f451(8) and for this purpose expand the fac-

tors =/1 - 2 and 1/1/1 - t2 under the integral sign in a power series in +t.
Term by term integration leads to the very rapidly converging series

2 4
1L (1 1 1
lel = 1—6' (‘g) + —128 <-S) + . . . (63)

32. Circular Cylinder Parallel to Plane Wall

An infinitely long circular cylinder, representing surface Fq of a two-

surface system, interchanges radiation with a plane wall. The second surface en-
compasses both the wall and the infinite half-space lying above it. The axis of
the cylinder is parallel to the wall and is d = B8R distance from it.

The notations are the same as for the case of the sphere and the plane wall.
Figures 30 and 31 remain unchanged for the present two-dimensional problem and
are now to be interpreted as sections normal to the cylinder axis. In the two-
dimensional case the direction-dependent reflection coefficient fiZl is equal

to the ratio of the distance a, by which the cylinder extends into the reflected
band-shaped bundle of rays, to the width 2R of the reflected bundle:

1 a .
lel =SR < 1~ % sin v

The reflection factor fi07 averaged over all directions of space is, for the
plane problem according to the integral (60), in our example found to be

X

Y v*
1 t 1
fi01 = = / fipp dr =7 / (1 - ® sin y)dy
¥ 0

The limit of integration ¥ - similarly to the case of the sphere and plane
wall ~ is again

T¥ = arc sin %

25



The reflection factor lel is a function of the nondimensional distance &:

1 X
fip1 = ;[arc s:m(%—) + o/82 - 1 - 8] (64)

wilth the series expansion

o -2 @) AB 5@ -] (65)

For the special case ©® = 1 the cylinder is tangent to the wall and there is
obtained

33, Eccentric Spherical Surfaces

A sphere, as surface F; of a two-surface system, 1s eccentrically situated
in a hollow sphere (surface Fp) with which it exchanges radiation. In accord-
ance with figure 33 we chose the ratio of the radii « of the spherical surfaces
and the nondimensional eccentricity & as parameters of the problem.

The direction~dependent reflection factor fiZl is determined by the

methods of projective geometry. The problem is one of rotational symmetry; hence
a single angle suffices for characterizing the direction of the bundle of rays
considered, namely the angle Y between the connecting line of the two sphere
centers and the ray direction of the beam. For the graphical presentation it is
most convenient to take this direction perpendicularly downward while the line
connecting the sphere centers is oblique.

We comnsider first the relations in a meridional section (fig. 34) through
the two sphere centers M; and Mp. Of all rays striking the spherical surface
Ko vertically downwards in the meridional section, the two "limiting rays" sp
and sy are drawn and the reflected rays s{ and sé Jjust graze the sphere
Ki. The reflections of all rays of the meridional section to the left of sq
pass on the right of the sphere KXj, those to the right of s, pass on the left.
Only the rays between s7 and s, are thrown back on the sphere Kl after re-

flection on Xo,.

Figure 35 shows the projective geometrical construction in plan form (in-
dex ') and elevation (index ") for the rays outside the meridional section
plane. We now consider all rays that are the generatices of a circular cylinder
with the axis ©SMs; and with the circle kq (in the elevation projected as a
line) as the generating curve. Their reflections form a circular cone with the
vertex S, the axis ©SMp and the base circle kj whose contour lines s7 and
s, are drawn in the elevation. Of the rays of the cylinder surface we shall
56



Figure 33. - Eccentric spherical surfaces.
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separate the rays whose reflections strike the sphere Kl from the rays whose
reflections pass by Kl' We seek the limiting rays whose reflections Jjust touch
Ky. These rays we cobtain by the construction of the tangent generatrices of the
cone to the sphere Ky for which a geometric locus is the second circular cone
formed on the tangents to Kl from S. The contour lines my and my of the
second cone (also with vortex 8) are drawn in the elevation. The required tan-
gent lines are the common generatrix lines of the two circular cones. We choose
an auxiliary sphere X3, with the center 8, that cuts out the circles k3 and
ko from the two cones. The points of intersection of the two circles are points
of the required tangent surface lines., Their elevations coincide at the point
P", the point of intersection of the lines ki and k3, and whose horizontal
projections P' is drawn. The horizontal projections P{ and Pj5, of the pene-
tration points of the two Eangent surface lines with the sphere X5, are obtalned
as points symmetrical to P' on the circle k{. They are the horizontal pro-
Jections of the two limiting rays on the surface of the circular cylinder with
the base circle ky whose reflected rays just touch the circle K;. The perpen-
dicular rays through the arc of the circle kq that lie on the left of P; and
P, have reflected rays that strike the sphere X, those through the arc on the

right have reflected rays that pass by K,;. By varying the radius of the circle
ky ‘there is finally obtained, point by point, a closed curve <c, which encloses
the bundle of all rays that strike the outer spherical shell vertically downward
whose reflections fall on the inner sphere. The hatched part of this bundle
originates from the sphere K; and the direction-dependent reflection factor
fiZl is thus equal to the ratio of the hatched area to the area of the horizon-
tal projection circle Ki of the sphere Kl‘

The construction of the direction-dependent reflection factor was now re-
peated for several angles Y (in steps of 45°) in order to obtain the reflection
factor fy57 averaged over all directions by evaluating the integral (59). This
factor is a function of the ratio of the radii « and of the dimensionless ec-
centricity ® and was determined as a function of kK 1in steps of 0.1 and as a

function of ©® in steps of 0.2 or, if required, of O0.1l. Figure 36 gives the re-
sult. The dashed bounding curve corresponds to the case of the tangency of the
two spherical surfaces and its point of intersection with the ordinate & =1 %o
the case of a very small inner and a very large outer sphere (ratio of radii

K = 0), that touch each other. The reflection factor corresponding to this point
originates from the computation of the example of sphere and plane wall at con-
tact of the surfaces and amounts to 0.0756.

In the special case of concentric spherical surfaces, all the rays starting
from the inner sphere after the specular reflection at the outer spherical sur-
face again return to the inner sphere, and all of the rays starting from the
outer sphere again return to the outer sphere after reflection at the outer
sphere. The reflection factors are fq57 =1 and fpos = 1, not only for the

first reflections but also for the second, third, and further reflections so that
the basic approximation assumption of the second section is here exactly satis-
fied. Accordingly, the condition (38) from the second law of thermodynamics must
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Figure 36. - Reflection factor f157 for eccentric spheres as

function of ratio of radii K and dimensionless eccentricity ©.

also be satisfied here. This is actually the case since for the convex surface
F,, the second equation of equations (50), which alone is essential, is satisfied
with fy00 =0 and fopq = 0. TFor the correction factor to be applied to the

Nusselt approximation there is thus obtained, in the case of concentric spherical
surfaces, under the assumption of specular reflection at the outer surface, the

exact solution

1
k=7 - e (66)

which is alsoc obtained in the case of parallel plates for any reflection laws.
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34. Eccentric Circular Cylindrical Surfaces with Parallel Axis

A circular cylinder - as the surface F; of a two-surface system - is ec-
centrically situated in a hollow cylinder (surface F,) with which it inter-
changes radiation. The two circular cylindrical surfaces have parallel axes and
are infinitely long so that the case may be considered a two-dimensional problem.
In accordance with figure 33 (which is now to be interpreted as the section nor-
mal to the cylinder axes), we choose the ratio of radii « of the base circles
of the cylinder and the dimensionless eccentricity & as the parameters of the
problem.

The direction-dependent reflection factor fiZl deperdds on a single rota-

tion angle v, and with the limiting rays introduced in figure 34 of the preced-
ing example can be graphically determined:

1 [
T121 = 2R

The graphical determination as a function of the angle y was carried out in
steps of 45°.

From the evaluation of the integral (60) there is obtained the reflection
factor fy57, averaged over all directions, which was determined as a function of

the ratio of the radii « and of the dimensionless eccentricity © in steps of
0.1 each. The result is shown in figure 37. The dashed limiting curve corre-
sponds to the case of the contact of the two surfaces and its intersection with
the ordinate ® =1, to the case of an inner cylinder with a small base circle
radius and an outer cylinder with a very large base circle radius (ratio of radii
K = 0), that touch each other. The reflection factor corresponding to this point
originates from the computation of the example of a circular cylinder parallel to
a plane wall for contact of the two surfaces and amounts to 0.18Z.

For the special case of a concentric circular cylindrical surface with par-
allel axes, what has been said for the concentric spherical surfaces holds with-
out change.

4. LAMBERT REFLECTION

The computations of this section are based on the law of Lambert reflection
for both surfaces of the two-surface system; If heat radiation from any direc-
tion falls on a surface, the reflections are distributed according to the Lambert
cosine law. The directional distribution of the reflection coefficient is ac-
cordingly independent of the direction of incidence. Since the Lambert cosine
law was also assumed for the directional distribution of the emissions, we have
in the case of the Lambert reflector, the important mathematical simplification
that the emissions and reflections may formally be equally treated. The sum of
all reflections can be combined with the emission into a new magnitude. In the
visible wavelength region one would speak of the brightness of the surface at a
definite point and this idea will also be carried over for the heat radiation.
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Figure 37, - Reflection factor fy57 for eccentric circular cylinders
with parallel axes as a function of ratio of radii K and dimensionless

eccentricity o.

We first consider the computation of the reflection factors in the sense of
the theory given in section 2. In the case of the Lambert reflection, the direc-
tional distribution of the reflected energies is independent of the origin of the
beam. Hence, the reflection factors with different first and equal second and
third index numbers coincide and the number of the reflection factors reduces to

four, namely:

110 = fo11 A
f112 = T212
> (67)
T121 = Top1
f102 = Taop
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The theory of the heat transfer for Lambert reflectors will then be gener-
alized. We shall not only restrict ourselves to the treatment of the two-surface
system, but also investigate more general arrangements of surfaces. We also drop
the approximation assumption of the second section in accordance with which the
second, third, and further reflections locally and directionally have the same
distributions as the first. These discussions are given in sections 42 to 45.

Finally, the examples of the last sections will also be treated under the
assumption of the law of Lambert reflectlon.

41. Computation of Reflection Factors

The surface F, of a two-surface system emits the radiation energy

T 4:

1

q =Ff = Flcs€l<1oo)

of which the fraction FE{¢py, falls on the surface F; that in turn again re-
flects the amount F E Qy0p5f157 back to the surface Fi.

We fix a point on the surface Fq by the coordinate x; and a point on the
surface F, by the coordinate x5. In general, x; and xp are each determined

by two scalar magnitudes, the surface coordinates on the surfaces. Correspond-
ingly, dx; and dxp are usually surface elements and the integrals over func-

tions of xq or xp are double integrals.
Of the emission from the surface F the radiation energy F.E;¢ falls
1s 1~1 l,x2
on the surface element dF(xz) at the point x5, which owing to the known rela-
tion

F101, %, = Fxp)0x,, 1

between the solid angle ratios, is also equal to Eq dF(Xz)QXE’l. Here 1, x,

denotes the solid angle ratio for the radiation exchange of the entire surface
F; with the surface element dF(x5) and is, therefore, a differential. The

solid angle ratio for the radiation exchange of the surface element dF(xp) with
Fy 1s denoted by ¢x2 1- According to the Lambert reflection law the surface
2

F reflects back on F the amount po®p times the incident radiation.
Integrating over F,, there is obtained the total radiant energy reflected by

Fo on the surface Fq:
E 2 L ar(xs)
1P2 ®X2,l 2
F

2

Comparison with the expression formulated with the ald of the reflection factor
leads to the relation
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/ 0%, 1 F(xp)
F

S
(68)
F1912

Ti21 = fa21 = A =

which by interchanging indices, goes over into an analogous expression for
fo12 = f112 = £1-

The equations (50) stemming from the second law of thermodynamics go over
for the Lambert reflection, taking account of equation (67), into the requirement
Ao = 9o and Ay = @79, which is satisfied only if the solid angle ratio @Xz,l

and @, o, depending on the point coordinates, are constant and therefore equal
2

to @p7 and @qp, respectively. The contradiction, as mentioned earlier in the

report, is due to the approximating assumption according to which the second and

further reflections are distributed in the same way as the first. We circumvent

the difficulty by computing the reflection factors according to equation (68) and
assume relations (51) and (52) as approximately valld, nevertheless.

42. Simplified Theory of Many-Surface System

We consider a system of n surfaces that exchange radiation with each
other. FEach surface is assumed to have the same temperature and the same radia-
tion properties (emission and reflection coefficients) at each point and from
each surface element of any surface, only parts of the surfaces of the system
can be seen. We denote such a configuration, by analogy with the two-surface
system, a multisurface, or more accurately, an n-surface systemn.

For the following computations we assume the Lambert cosine law for the di-
rectional distribution of the emissions and reflections and further make the ap-
proximating assumption that the reflections on each surface are locally uniformly
distributed so that the brightness on each surface 1s a constant.

The k' surface emits the radiation energy

4
Ty
FkEk = FkC sek(TéB)

and its brightness is made up of its emission per unit surface and the sum of all
reflected radiations:

Hy, = B + Z:Rk (69)

The total surface radiation Fy, therefore, is FyHy. Of this total the part
Fi o P4 reaches the ith surface, which again reflects the amount F HQysp4,
and owing to the relation
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Fifes = FiPsx

between the solid angle ratios is also equal to Py HPiyrpq- The sum of the re-
flections of the i%® surface is then obtained as

n
Fy z Ri = piFy Z P1xfl
k=1

and, finally, from equation (69) the brightness H; of the Vit gurface

Il
Hy =8+ pg Z Pl (70)
k=1

The equation (70) can be written down for each index i, hence, n times alto-
gether. This equation represents a system of n linear equations for the deter-
mination of the n unknown brightnesses of the n surfaces.

The concept of the heat transfer from one surface F; +to another surface
Fy  here becomes devoid of application in contrast to the computations where the
reflections are neglected, for the heat exchange process is no longer a matter of
two considered surfaces alone, but all other surfaces participate as reflectors.
The heat exchange of group T of the first m surfaces Fy (index i =1.. . m)
with group II of the remaining (n - m) surfaces Fy (index k =m+ 1. . . n)
is of interest. This heat exchange is expressed in the form of the double sum

m n
QI, IT = Z Z Fip3(H; - He) (71)
i=1 k=mt+1

from an energy balance through comparison of all the radiations sent out from one
group to the other. The sequence of the swmmations can be interchanged. The
heat

n
Q = Fy Z Pix(Hy - ) (72)
k=1

given off by the ith  surface to all remaining surfaces follows as a special

case (m = 1) from equation (71). The same result gives an energy balance for the
n

surface F; 1in which the sum of all absorbed amounts, namely e4F4 :E: PipHks 1s

k=1
subtracted from the emission FiEi'
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The solution of the system of equations (70) for a not too large number of
surfaces n 1s best effected in closed form, for example, according to the
Gauss algorithm. For large n +the use of an iteration process is recommended.
On the right side of the equations the emission energies E; generally predom-
inate so that the first approximation H; = E; can be substituted on the right,
The H; obtained on the left side of the equation canvagain be substituted on
the right side and the process can be repeated until the desired accuracy is at-
tained.

The simplified theory of the multisurface system can be applied to the
treatment of the two-surface system with account taken of the local distribution
of the reflections by dividing the surfaces into partial surfaces. The accuracy
can be ralsed by increasing the number of partial surfaces. The limiting case
of infinitely many partial surfaces corresponds to the theory of the next sec-
tion.

The system of equation (70) can formally be written as a vector equation if
the n brightnesses H; are taken as the components of a brightness vector H

and the n emissions E; are taken as the components of the emission vector.
With the n-row and n-column coefficient matrix

P1P11 P1P12 - - - P1%1n

e2P21  P2P2z - - - P2P2p
M = )

pnq)nl pnwnz ot pn@nn

the system (70) assumes the form
H=FE+ MH (73)
where the vector H occurs as column vector in the matrix product.

For the special case of the simplified theory of the two-surface system, the
linear system of equation (70) becomes

Hy =EF1 + p1931H) + 11282

I

Hp

)

Ep + ppp1Hy + ppfo2H,

The elimination of Hy gives
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B (T - ppPpp) + 0997 5E,

o = -
171 - 01917 - e + p102(911925 - P1Pa1)

The analogous relation for Hy follows from the preceding relation by inter-

changing the indices. The expression for the heat transfer from the first to
the second surface

Qrz = Fi012(Hy - Hp)
is obtained from equation (72), since in the case of the two-surface system,

the heat given off by the first surface is equal to the heat le transferred
per unit time. We put it in the following form

7 \¢ (mp\*
Q2 = F1¢12Cs€l€2K[<%66) - <i66> ] (51)

and by substituting the expressions for the brightnesses, obtain the correction
factor

1
K = —— (74)
1= 01019 = poPap t p10p(017000 = B15Pn7)

that is to be applied to the Nusselt approximation. Equation (74) also follows
as a special case from equation (52) if the corresponding solid angle ratios are
substituted in place of the reflection factors. If the first surface T 1is
convex, the correction factor K simplifies to the known relation

Ke— 1 (75)
€2 F Pp1€1 - Pp1€71€2

For the single radiating surface (cavity of constant temperature) system
(70) goes over into the single equation H = E + pH, from which it follows that
the brightness of a cavity radiator is equal to that of the blackbody radiator
(for equal temperature).

43. Integral Equation for Brightness Distribution

Starting from the notion of a many-surface system, we now make the limiting
transition to infinitely many surfaces. We consider a system of surfaces whose
temperature T and, therefore, the radiation emission E per unit surface,
whose radiation properties (emission and reflection coefficients) and whose
brightness H varies from point to point. As in sectlion 41, we fix the posi-
tion of a point by a point coordinate x, which in general, consists of two
scalar magnitudes (surface coordinates).

For what follows we introduce a fixed point coordinate x and a current
coordinate (integration variable) &. The solid angle ratio @Xg for the ra-
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diation exchange of the surface element dF(x) at the point x with that at the
point ¢, dF(t), is equal to

Dye = 80% £)AF(E)

where g 1s the function

CcCOs 'Vl CcOos Vz

g(xt) = e(g,x) = 5 (76)
nr

of the two point coordinates, symmetrical in x and §&; r 1is the distance be~
tween the two surface elements and v and v, are the angles between the sur-

face normals and connecting line of the elements (fig. 28).

From the surface element at the point ¢ +the radiation energy dF(&)H(t) is
emitted. Of this radiation, the part

Pey F(ENH(E) = gl £)aF (x)aF (£)E(E)

strikes the surface element dF(x), which again reflects the amount
o(x)g(x, 8)aF(&)H(E). The total of all reflections sent out from the point x

S odsts s )ame)
€

is to be added to the emission per unit surface

B(x) = cse<x>[ﬂﬁ]4

100

to obtain the brightness H(x). The soluticn of the Fredholm integral equation
for the brightness distribution is H(x):

H(x) = B(x) + o(x) { e(x, £)E(t )ar (e ) (77)

With reference to the theory of the multisurface system we divide the system
of surfaces into two regions; namely, By and Bp, and compare the radiations
from one region to the other in an energy balance, Denoting the brightness and
point coordinate on By by H; and x3, respectively, and the brightness and

point coordinate on By by Hy and x5, respectively, the radiation energy
transferred from the first region to the second is

QB. B =f / g(x1, x2) [H(x1) - Hp(xp)] aF (x;)aF () (78)
1-2 B B
1 2
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The heat given off per unit surface at the point x follows as a special case
from the formula (78) if the region By is assumed infinitely small; or through

the subtraction of all absorbed amounts from the emission E(x) per unit surface:

B (x) - { g(x,§)[A(x) - K(g)lar(e) (79)

The integral is to be taken over the entire system of surfaces.

The solving of integration equation (77) is best effected through iteration
by substituting a first approximation function for the brightness distribution
in the integral to obtain a second approximation from the equation. The itera-
tion process is to be continued until the desired accuracy is attained. The
process converges more rapidly the smaller the reflection coefficient p(x), that
is, the term E(x) on the right side of the integral equation is more predomi-
nant.

The close connection of the results of this section with the simplified
theory of the multisurface system 1s evidenced most clearly if the integral in
equation (77) is formally expressed by an integral operator M, which carries
over the brightness distribution into another point-dependent function; namely,
in the result of the integration. The integral equation (77) then assumes the
same form as the vectorially written system of equations (70), sc that:

H=E+ MH (73)

The operation of the matrix multiplication, in the case of the multisurface sys-
tem, corresponds to the integration; the emisslon and brightness vectors corre-
spond to the point-dependent functions E(x) and H(x).

44, Two-Dimensional Problems

In the case of infinitely long cylindrical configurations the surface ele-
ment dF(x) can be taken as infinitely long narrow strips. The area of dF(x)
1s equal to the product of the arc element ds din a section normal to the gen-
eratrices of the surfaces and a unit length, which is always eliminated from the
computation by referring the emissions, brightnesses and heat transfers to unit
length.

With the notation of figure 38 we compute the so0lid angle ratio of the ra-
diation exchange of the surface element strip dF(x) with dF(&) through integra-
tion of the solid angle ratio for the radiation exchange between dFq and dFs

over the length z:
oQ
CPX§=/CPdFl,dF2=/ &(x58,2)ds(8)dz
Z -C0

The angles vy, a, and v{ are sides of a rectangular spherical triangle. The

69



o] V] :

\
az ‘g, “dF(x)

Figure 38.

spherical Pythagorean theorem leads to the relations
1 _ X 1T
COS V] = COS Vq COS o = COS V) =5 and COS V5 = COS V,

By substituting in the expression for g

cos vi cos vé cos vy COS vy rZ

g€ = j—(rlz = J'EI‘”J“

there is obtained the solid angle ratio

cos vq cos v2r2 ds(¢) az
Pt T (z2 + r2)

-0

or

Oye = 105 8)as(t)

if the function is introduced then,

COS Vl COs V2
Y(X:E) = Y(g,X) = o
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symmetrical in x and ¢ and dependent on the two point coordinates. For the
remainder, the equations (77) to (79) also hold with the new surface elements ex-
cept that in the formulas the function g(x,£) is to be replaced by 7y(x,t) and
the surface element dF by the arc element ds, whereby the emissions, bright-
nesses and heat transfers then refer to unit length.

45, Approximate Solution of Integral Equations for Two-Surface System

In the case of the two-surface system it is convenient to resolve the in-
tegral equation (77) into a system of two integral equations as follows:

~
H]_(Xl) =E; + pg f g(X]_; El)Hl(El)dF(El) + p1 { g(X]_: gg)Hz(Eg)dF(E.z)
T 2
L (82)
Ho(xs) = Ex + pp f g(xp, £1)H  (£7)dF(Eq) + po ‘{- g(%o, £0)Ho(E5)dF (Eo)
Fl 2 J

where the index 1 refers to the point coordinate, brightness, emission coeffi-
cient and reflection coefficient on the first surface and the index 2 refers

to the corresponding magnitudes on the second surface. The transferred radiation
energy is obtained from equation (78) by making the regions By and By co-
incide with the surfaces Fq and Fo.

To solve the integral equation system (82) we make use of the iteration
method. On the right side, as first brightness distributions, we put the con-

(0)

stant brightnesses H&O) and Hs that are obtained from the simplified theory

of the two-surface system (sec, 42) and, since these are already a fairly good
approximation, we break off the computation after the first iteration step. On
the left side of the system we then obtain the first brightness distributions

Hgl)(xl) and Hél)(xz), and this constitutes the only approximating assumption
of the succeeding computations. On the right side of equation (82) we can now
take the constants Hgo) and Héo) outside the integral sign. The remaining

integrals are solid angle ratios for the radiation exchange of a surface element
with one of the two surfaces of the two-surface system, for example

/ g(xy,t0)dF(Es) = Pxp,2

Fa

and the system (82) goes over into the form

It

1 0 0
H§ J(x1) = By + Png )@xl,l * leg )@xl,Z

Hgl)(xz)

0) 0)
By + pB{ Prpy1 T 028 Py, 2
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or

N pl‘le,z[H:(Lo) - Hgo)]

Byt o) - pz‘sz,l[Hgo) - Hgo)]

To formulate the heat transfer from the first surface to the second we require

the difference of the two brightness functions H(l). The brightnesses H£O)

[l

11 ()

and Hgo) are connected by the linear system of equations (70) written for the

case n = 2. If the solid angle ratios @191 and @py are replaced by 1 - 95
and 1 - @pq and the second equation 1s subtracted from the first there is ob-
tained

Ey - Ep + le](_O) - sz’gO) = [Hgo) - Hgo)] [1 + o112 + p2921]

whence there is finally obtained

Hil)(xl) - Hél)(xz) = [Hﬁo) - Héo)] [1+ 01015 + ppp; - PPy, 2 7 Pa¥x,, 1]

We substitute in equation (78) and take the constants outside the integral sign.
The remaining double integrals we express with the aid of the magnitudes A; and

Ao, according to the definition of equation (68), so that

ff g(xy, x5)@F (%1 )dF (x3) = F10975
¥ F;

2
gy, x2)0x , 2 OF (3 )AF(xp) = / Px,,2 FOr) = Fio1ahy
F1 "F2 Fy
- 2 -
/ / g(xl’XZ)CPXZ,l dF<Xl)dF(X2) = /CPXZ’]‘ dF(Xz) = Fl(PlZAZ
F "Fp Fa
and obtain for the radiation energy transferred from Fl to Fo:
0 0
Q2 = Fl(plZ[HI(L ) - m )] [2 - e1(8 - 912) - pp(B - 921)] (83)
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and for the correction factor to be applied to the Nusselt approximation accord-
ing to equation (51):

1 - p1(Ay = 913) = pp(Bg - 9p7)

= ' (84)
1 - P11 - P22 * P1e2(P1iPez - P12P21)
If the surface F; 1s convex, we have @5 =1, wxl’z = 1 and, therefore,
A =1, which yields:
1- A, - )
K p2(Az - 957 ‘ (85)

“T- Dg(l - @21) - p1PPo7

The expressions (52) - with the reflection factors for the Lambert
reflection - and (84) are different approximations for the same correction fac-
tor X. Their comparison shows agreement except for terms in which at least two
reflection coefficients occur as factors. Thus, in both approximations the first
reflections are treated exactly; whereas, only the second and further reflections
are approximate. Furthermore, a second iteration step can give only correction
terms with two reflection coefficlents as factors, and a third with only three
reflection coefficients.

48, Sphere and Plane Wall

We investigate the radiation exchange of a sphere with a plane wall in the
arrangement and with the notations of section 31l. Since the surface ¥ ois

convex, we need to compute only the magnitude A,. Further, the solid angle
ratio @p1 = 0, because the surface Fy 1is infinitely large.

The solid angle ratio mxg,l for the radiation exchange between a surface

element on the wall (at A in fig. 39) and the sphere is to be determined first.
We recall the graphical construction of the solid angle ratio in conformity with
Nusselt (ref. 4), according to which the surface F, under consideration is to
be projected a first time on the unit sphere about the point A as projection cen-
ter, and the resulting image projected a second time on the tangential plane to
the surface F, at A (in our case the wall itself). The required solid angle

ratio is then equal to the ratio of the area of the image on the tangential plane
to the area of the unit circle (w). In our case, the projection of the radiating
sphere on the unit sphere is a small circle with the radius sin w, and the pro-
Jection on the wall is an ellipse with the semiaxes sin @ and sin o cos a.
Thus, there is obtained

2

Pxp,1 = sin“w cos a (86)

As the surface element on the wall we choose a narrow circular ring surface with
the normal projecticn E of the sphere center M on the wall as the center, the
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sinw cosat

Figure 39. - Determination of solid angle ratio oxz,l.

distance EA = Rx, as the mean radius, R dx, as the width, and the surface area
as

dF(Xz) = ZJTRZXZ dxo

From figure 39 the following relations are obtained:

ol ]
ol Fet

sin 0w = and cos o =

with
VAZ = a2 = RZ(SZ + x%)

By substituting in equation (86) there is obtained

2 _ 8"

@xgyl (82 . X%)S

and, with F; = 4xR® as area of the radiating sphere, according to equation
(68), the coefficient

I



A =
g 2 (62 + X%)S
0
and finally
1
A, = =% (87)
2 ga?

47. Circular Cylinder Parallel to Plane Wall

An infinitely long circular cylinder exchanges radiation with a flat wall.
The arrangement and notations are the same as in section 32. Again, as in the
previous example, only the magnitude A, 1s to be computed and the solid angle
ratio Poy = O.

For this two-dimensional problem we also make use of figure 39, which is
now to be interpreted as a normal section to the axis of the circular cylinder,
and permits us to derive the soclid angle ratio Pxp, 1 graphically. The central

projection of the cylinder on the unit sphere about the point A is a spherical
lune bounded by two great circle arcs; the normal projection of this surface on
the wall is a lune bounded by two elliptical arcs. The required solid angle
ratio is equal to the ratio of the area of the lune to the area of the unit
sphere and this is equal to the ratio of the maximum width 2 sin ® cos o of
the lune to the diameter 2 of the unit circle:

Py, 1 = sin @ cos a (88)

As a surface element on the wall we choose an area (per unit length)
dF(xz) = R dxp

of a small strip parallel to the cylinder axis with the width R dx, at the dis-
tance EA = Rxo from the normal projection of the cylinder on the wall. The

angle functions sin @ and cos a are connected with the dimensions of the fig-
ure in the same way as in section 46. Substitution in equation (88) glves

5
Pl T 52y x5

and, with Fl = 2xR  as area per unit length of the radiating cylinder,

(&)



21 2
2 2
(5 + XZ)
—
and finally
1

48. Eccentric Spherical Surfaces

Two eccentrically situated spherical surfaces interchange radiation with
each other. As in section 33, we choose the ratio of « of the sphere radil and
the dimensionless eccentricity © as parameters of the problem., Again only A,

is to be computed and the solid angle ratio for the radiation interchange between
the outer and inner spherical surface amounts to @5y = K@,

As the surface element of the external sphere we choose, according to fig-
ure 40, the surface area of a very low truncated cone and for determining the
locus we choose the angle at the center ({:

aF(xp) = 2nRe sin £ At

The visual rays from the point P to the contour of the inner sphere form a cir-
cular cone with the half aperture angle ® whose axis makes the angle o with
the surface normal of the outer sphere. The solid angle ratio @y is, in

1
our example, again computed from the relation (86), with e

: R
sin o = £
a

cos a = § (1 - ® cos t)
and a = MyP according to the cosine law in the triangle M;PM,d
aZ = R2(1+ 8% - 25 cos )
and found to be

3
R 2
o) == k“(1L - 8 cos ¢)
Xz, 1 as

With the area F, = 4xR%k% of the inner sphere, after substitution in the ex-
pression (68), there is obtained

76



7T
Ag = 53 (1 - & cos C)z sin ¢
2 (1L+ 82 - 28 cos t)5

g
0

In the special case of concentric spheres (5 = 0) the integral is greatly
simplifled and there 1s obtained the well-known solution

2

f101 = 8o = k% = 9p (90)

In general, the magnitude As 1s a function of both parameters « and 8.
We transform the integral through the substitution

cos £ =1

into the form

2 (1 - 8t)8 44

Ap = K-
2 (1+ 82 - 25t)°
-1

in which the integration can be carried out by means of decomposition into par-
tial fractiomns:

2 2
K 1 1+ 1 (lﬁ—fj
Ay = — + + - In|———7¢ (91)
2 -

2 |:l - 52 2(1 _ 52)2 43 1 5:}

For small eccentricity the series expansion

2
Ap =KT S (2k+ 3 + ———-Eki l>62k (92)

k=0

is recommended. The function As(k,d) increases monotonically with the eccen-
tricity ©&. Starting with horizontal tangent from the value K2, the rise be-
comes steeper with increasing eccentricity. The limiting case & =1 and

K = 0 corresponds to a very small inner and very large outer sphere that touch
each other. The corresponding coefficient A, can be taken from the computa~-
tion of the example of a sphere and a plane wall in contact with each other and
has the value

Az(K?—‘O,‘ 6=l)=

el 1o
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49, Eccentric Circular Cylindrical Surfaces with Parallel Axes

Two infinitely long circular cylinders with parallel axes eccentrically
situated exchange heat through radiation. The arrangement and notations of the
plane problem here considered correspond to the example of section 34. The
solid angle ratio for radiation exchange from the outer to the inner cylindrical
surface 1s @p = K and again A, 1s to be computed as a function of the two

parameters K and O.

To determine the solid angle ratio Px5,1 fTor the radiation exchange be-
tween a surface element on the outer cylindrical surface and the inner surface
we agaln use figure 40, which is now to be interpreted as normal section to the
axes of the circular cylinders. The visual rays from the point P +to the con-
tour of the inner cylinder form a wedge with the half aperture angle , whose
plane of symmetry forms the angle o with the surface normal of the outer cylin-
der surface P. The required solid angle ratio is then found from formula (88)
with account taken of the relation, already used in the last section, between the
geometric magnitudes of the arrangement:

R%
Pxo, 1 :';g k(1 - & cos )

As surface element on the outer cylinder we choose an infinitely long narrow
strip in the direction of the generatrices of the width R df with the ares

(per unit length)

With the area Fq = 2nRK (referred to unit length) of the inner cylinder surface
there is obtained, from equation (68)

e
2
Ay = é& (1 - & cos ) . at
% (1+ 82 - 25 cos t)
-7
The substitution
£ _
tan 5 = t
leads to the expressions
- +2
cos § = 1———35 and at = _§_§E§
1+t 1+t

and enables the elementary evaluation of the integral by means of resolution into
partial fractions. The function
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Flgure 40. - Determination of solid angle ratio 9y s1.

K[z - 82
A, = £e=°C (93)
2 2[; - 62]
as in the preceding example, monotonically increases with the eccentricity 8.
Tt starts with horizontal tangent with the value k and rises with increasing
eccentricity more and more steeply. The limiting case & =1 and Kk =0 corre-
sponds to an inner cylinder with a very small diameter and an outer cylinder with

a very large diameter. The corresponding coefficient A, can be taken from the

computation of the example of a circular cylinder parallel to a plane wall and
has the value

Ao(k =03 8 =1) =

IS
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5. SUPERPOSITION OF REFLECTION LAWS, RESULTS OF MEASUREMENTS
FOR ECCENTRIC SPHERICAL SURFACES
51. Dispersion Coefficient

The specular and the Lambert reflector are mathematical models that enable
a computation of the heat exchange through radiation with a tolerable amount of
computation. As previously mentioned, the measured directional distributions of
the reflections lie. between the two extremes treated and, therefore, it appears
to be a reasonable assumption that the true situation is best approximated by
superposing the results of the two reflection laws.

We shall first apply this assumption to the differential reflection law,
that is, to the incident angle-dependent directional distributions of the reflec-
tions. The approximation of the measured directional distributions of the re-
flection coefficient by a mixture of the laws of specular and Lambert reflection
would then appear to be rather bold, since for a definite direction, considerable

deviations may occur.

However, our assumption does not refer to the differential law but refers to
the problem of the heat transfer. In each case, the exchanged radiation energy
is obtained through repeated integration from the emission and reflectlion laws
and, in accordance with the theory of the second section, is determined by the
solid angle ratios and reflection factors of the problem under consideration.

Let a certain reflection factor assume the value fsp for the law of specular
reflection and the value £y, Tfor the Lambert reflection. For the resulting
reflection factor to be substituted 1n computing the heat transfer we now assume
the expression

Tres = (1 - 7\)fsp * Mian (94)
that permits a best possible approximetion to reality through a suitable choice
of the coefficient A in the interval between 0 and 1. We denote the coef-
ficient A as the dispersion coefficient or the degree of dispersion. The dis-
persion coefficient depends primarily on the reflection properties of the par-
ticipating surfaces and secondly on their geometry. It is zero if there are only
Lambert reflectors and thus gives a measure of the dispersion capacity of the
reflecting surfaces. Because, however, surfaces with different reflection prop-
erties generally participate in the radiation exchange, AN 1is not a constant of
the material but a characteristic magnitude of the particular problem under con-
sideration.

In the case of the two-surface system we may ask which of the two surfaces
has the greater effect on the determination of the dispersion coefficient. If
one surface, for example Fj, is convex or nearly convex, formula (56) has shown

that the second surface F, essentially determines the value of A. In formula
(56) only reflection factors that refer to a reflection at the surface Fy ap-
pear; the other four reflection factors, according to formula (53) follow from
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the convexity of the first surface. Accordingly, it is the more concave of the
two surfaces (in the computed éxamples the enveloping cavity) on whose reflection
properties the dispersion coefflcient chlefly depends.

52. Results of Measurements for Eccentric Spherical Surfaces

Measurements of the heat transfer through radiation (e.g., eccentric spher-
ical surfaces), were carried out by K. Elser (ref. 7) at the Institute for Ther-
modynamics and Combustion Engines of the Swiss Institute of Technology. In his
test arrangement he used spherical surfaces with the ratio df radii « = 0.5
and with various surfaces. He found that the heat transfer clearly increases
with increasing eccentricity (not as much as with the computation with the law
of specular reflection) and that for the variation with the eccentricity only
the radiation properties of the outer spherical surface were of significance.
These results agree with the prediction of the theory.

With a similarly constructed test arrangement tests were carried out by the
present author using eccentric spherical surfaces with the ratio of radili
K = 0.,3. An inner sphere of brass of 30 millimeters outer diameter exchanged
radiation with a hollow copper sphere of 100 millimeters inner diameter. Both
surfaces were black-oxidized; however, the oxide layers were less dense and black
than those of the test plates of black-oxidized brass sheet mentioned in sec-
tion 1.

The inner sphere had an interior cavity. This cavity contained a heating
coil of canthal coils, which were loaded with about 40 watts during the test.
The wall of the sphere was 4 millimeters thick and conducted the heat in tangen-
tial direction sufficiently to assure a uniform surface temperature. The tem-
perature during the tests was about 490° to 500° C and could be determined with
a copper-constantan thermocouple whose wires were mortised into two separated
oppositely lying holes of 1 millimeter tangentially into the sphere wall. The
thermo-electromotive force was measured without current by applying an equal and
opposite compensation voltage. For heating the sphere a direct current source
was used that was fed by a storage battery and had a very constant line voltage.

The inner sphere was suspended in the interior of the hollow sphere so as
to swing on the heating wires. By inclining the outer sphere with the suspension
the mutuwal position of the surfaces could be varied and adjusted to any desired
eccentricity.

The outer hollow sphere was maintained at constant ambient temperature
through a cooling Jjacket in which water circulated. The sphere was evacuated
with the same high-vacuum apparatus, which was applied in the aparatus for the
reflection measurements, and consisted of two hemispherical shells that were
pressed together with a flange made airtight with vacuum grease. TIts internal
pressure was always maintained below 10-4 millimeters of mercury during the tests
in order to suppress the heat conduction and convection of the intervening air
layer.
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The heat conducted away by the heating and thermocouple wires entered as a
measuring error of the transferred radiation energy. This heat loss amounted to
about 0.5 percent of the heating power and was taken into account. The heat con-
duction and convection in the air layer for the vacuum used was negligible. The
electrical power was determined by measuring the current and voltage with pre-
cision instruments and the temperature of the inner sphere was determined within
an accuracy of about 1© C so that the relative error of the measured heat trans-
fer and of the other radiation magnitudes was less than 1 percent. The measure-
ments were not, however, always reproducible because the radiating surface of the
inner sphere slowly varied with time under the effect of the temperature.

From the measurements of the transferred radiation energy the factor eqegK
could, according to equation (55), be obtained as a function of the eccentricity.
The result is given in the lower half of figure 41 (dashed curve and plotted
measuring points). The emission coefficients €7 and €5 and the dispersion
coefficient N were at first still unknown. The theory was then applied for the
determination of the measured results by making the computed curve, through a
suitable choice of the emission ratios and the dispersion coefficient, coincide
with the measured curve at two points (collocation points), namely at the point
& = O (concentric position) and for © = 0.437, that is, at the point where the
reflection factor T,y assumes the same value 0.121 for the laws of the specu-
lar and Lambert reflections; on the other hand care was taken to obtain as good
as possible agreement of the computation with the results measured. There is to
be substituted e; = 0.76 (for the inner sphere), e; = 0.80 (for the outer
sphere)}, and A = 0.456 in order to obtain the solid curve in the lower half of
figure 41. In the example investigated an agreement of experiment with computa-
tion for the coefficient elezK can be attained within a relative deviation of
1 percent and the theoretically predicted variation of the heat transfer with
the eccentricity is well satisfied. Smaller deviations can nautrally be ascribed
to the simplified assumptions of the computation.

In the upper half of figure 41 the reflection factors fj27 (plotted points)
computed from the measurement results are compared with those obtained from the
reflection laws and their superposition. The figure shows that the dispersion
coefficient A also depends on the eccentricity ©, that is on the geometry of
the two-surface system.

As an example we shall compare various approximate sclutions for the radia-
tion exchange - as stages of an increasing approximation of the computation to
the real situation. The computer, who knows nothing of the emission relations,
will regard both surfaces as blackbodies and use the first rough approximation
€ €2K = 1. Considering the emission factors and neglecting the reflections leads

to the Nusselt approximation with €qepK = €je5 = 0.608. The reflections can be

approximately taken into account by treating the configuration as concentric
spherical surfasces with Lambert reflection according to equation (75) with
€1€K = 0.747, or by computing with concentric spherical surfaces for specular
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Figure 41. - Dependence of reflection factor f o7 and of exchanged
radiant energy on eccentricity & for eccentric spherical surfaces
(ratio of radii K = 0.3).

reflection with the factor eje K = 0.638, which gives the same emission rela-
tions as for parallel plates. In actuality e€jepK fluctuates, depending on the

adjusted eccentricity, between 0.690 and 0.745 and the computation with more re-
fined account of the reflections comes very close to the measured values.
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53. Effect of Directional Distribution of Emission

Thus far we have taken into account only the directional distribution of
the reflections. For the directional distribution of the emissions we assumed
the Lambert cosine law. The computations, on this basis, correctly give the de-
pendence of the heat transfer on the eccentricity for eccentric spherical sur-
faces. From this it can be concluded that the directional distribution of the
reflection coefficients is the principal factor with respect to the dependence of
the heat transfer on & while the directional distribution of the emission coef-
ficient only plays a subordinate part.

We shall see the effect of the directional distribution of the emission
coefficient; for example, eccentric spherical surfaces with small ratic of the
radii k. In the concentric position the rays from the inner sphere fall almost
perpendicularly on the surface of the outer spherical shell; correspondingly for
the computation of the heat exchange the emission coefficlent €, 1is to be sub-
stituted in the direction of the surface normals. If the spheres are situated
in a very eccentric position almost all angles between 0° and 90° are represented
in the incidence angles of the rays and an emission coefficlent averaged over all
directions (e.g., total radiation), is to be substituted.

Accordingly, an upper estimate of the effect of the directional distribution
of the emissions is given by the ratio e/en of the emission coefficient € of

the total radiation to the coefficient e, of the normal radiation. According

to the measurements of E. Schmidt (ref. 2) this ratio for bright metals is on
the average about 1.2; for nonmetals (depending on the surface roughness) about

0.95 to 0.98.

In the experimentally investigated problem of section 52 the variability of
€qe0K (and, hence, the effect of the directional distributions of the reflec-

tions) constitutes about 8 percent of the value for concentric position. The ef-
fect of the directional distribution of the emissions should amount to a maximum
of 2 percent since: (1) the extreme case described in our example (small ratio
of radili «k with nearly perpendicular incidence of the rays on the outer spher-
ical surface) does not apply and, (2) the occurring emission factors are rather
high and therefore the directional distribution of the emissions must come close
to the Lambert cosine law (as limiting case for the blackbody).

If the radiating surfaces are bright metals, the effect of the directional
distributions of the emissions may amount up to about 20 percent. But then the
emission factors are small and the reflections again play a much greater part.

Qur example shows how to take an approximate account of the directicnal
distribution of the ¢,: EFach individual case of the angles of incldence v

represented are to be investigated and the emission coefficlents averaged over
these angles are then to be substituted. A still more accurate computation re-
gquires the introduction of the ¢, distribution in determining the reflection

factors.
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54. Approach and Focusing Effects

We wish to explain clearly how the reflection effect arises and for this
purpose the example of eccentric spherical surface with small ratio of the radil
K 1s agaln taken as a basis. We consider the inner sphere as primarily radiat-
ing.

We start with a medium eccentricity and bring the inner sphere closer to
the nearest point of the outer sphere. The outer sphere then receives more ra-
dietion energy and, therefore, there is also an increase in the amounts re-
flected. The concentration of the reflections on the inner sphere at the closest
position causes the inner sphere to receive more back reflections and the ex-
changed radiation energy to decrease. We shall denote this phenomenon, which
occurs both for specular and TLambert reflection, the approach effect. The de-
pendence of the heat exchange on the dimenslonless distance ©& for the examples
of a sphere and a plane wall and for a circular cylinder parallel to a plane
wall is controlled by the approach effect.

If we bring the inner sphere from a weakly eccentric position into the con-
centric position, the heat transfer is only slightly affected if the outer spher-
ical surface is a Lambert reflector. However, if this surface is a specular re-
flector, the return reflections on the inner sphere greatly increase and the ra-
diation energy correspondingly decreases. This phenomenon, which we shall call
the focusing effect, takes place because the outer spherical surface (as a con-
cave mirror) combines the reflections and concentrates them at its center. The
focusing effect is a characteristic of the specular reflection and distinguishes
the behavior of the latter from the Lambert reflection.

These two preceding notions enable a prediction of the effect of the reflec-
tions and make it possible to Jjudge how the results deviate from each other, ac-
cording to the laws of specular and Lambert reflection. Larger deviations are to
be expected if the focusing effect plays the deciding part (e.g., in the case of
the two-surface system, if one surface is uniformly and concavely curved), hence,
specifically for concentric spherical and circular cylindrical surfaces. On the
contrary, for irregularly curved surfaces no large deviations are to be expected
and the computations may be conducted approximately with the more simple of the
two reflection laws alone, that is with the Lambert law. For this reason the
theory of the Lambert reflection was developed beyond the limits of the specular
reflection.

SUMMARY

The thermal radiation properties of a technical surface can be character-
ized by its emission and reflection coefficients. An experimental apparatus is
described for measuring the reflection coefficient as a function of the incident
and reflection direction. A radiation source irradiates a surface, given in the
form of a test plate, with definite intensity and in the given angle of inci-
dence. A radiation measuring apparatus catches the reflections in a small solid
angle region in the reflecting direction under consideration. The directional

85



distribution of the reflection coefficient clearly depends on the angle of inei-
dence, All transitions are possible, from the purely specular to the strongly
scattering reflector. The absorption coefficients can be obtained by integrating

over all directions of the half-space.

A contribution is made to the theory of heat transfer by radiation: The
computations are based both on the law of specular reflection, according to which
a radiation energy with incidence angle v 1s reflected with egual angle of re-
flection in the incidence plane, and on the Lambert law of reflection according
to which the reflections are distributed in accordance with Lambert's cosine law.
The superposition of the results gives the relations with good approximation as
is shown by the tests for the example of the concentric spheres.
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88

Black-oxidized brass

Anodically oxidized anticorodal

TABLE 1., - REFLECTION COEFFICIENT p!

u=v AND ¢ =0

Surface v =p = 30

White paper

45°
0.710
.798

89.5

FOR

60°

1.50

184.4

TABLE 2. - AVERAGE REFLECTION COEFFICTENTS p

FOR WHITE PAPER

[Emission temperature, To = 905° C.]

u 0 15° 30°

30° |0.485 | 0.464 |0.396

60° | .390 | .374 | .344

450

0. 322

.321

60° 75°

0.221 |0.1086

.284 | .178
o

750
17.4
10.2

770




TABLE 3. - REFLECTION AND ABSORPTION
COEFFICIENTS AS FUNCTION OF
INCIDENT ANGLE FOR BLACK-

OXIDIZED BRASS AND

WHITE PAPER

Surface v Te, oy 1l - oy

Black-oxidized brass | 0, 30° | 910 |0.086 [0.914
60° | 910 | .105 | .895

White paper 0, 30° | 905 | .222 | .778
60° | 905 | .240 | .760

TABLE 4. - ABSORPTION COEFFICIENTS DETERMINED FROM
REFLECTION MEASUREMENTS

[T, = emission temperature; surfaces are at
room temperature. ]

Surface Te In| 1 - Pn 1-p
oc
Black-oxidized brass 520 0.889 0.870
910 .914 .891
White paper 535 . 848
205 .778 . 753
White pine 910 .813
Calorstea (steatite substance) 905 . 567
Anodically oxidized anticorodal | 920 _.636
Sandblasted anticorodal 920 . 510
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